A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 2 Issue 2
Apr.  2015

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Long Ma, Haibo Min, Shicheng Wang, Yuan Liu and Shouyi Liao, "An Overview of Research in Distributed Attitude Coordination Control," IEEE/CAA J. of Autom. Sinica, vol. 2, no. 2, pp. 121-133, 2015.
Citation: Long Ma, Haibo Min, Shicheng Wang, Yuan Liu and Shouyi Liao, "An Overview of Research in Distributed Attitude Coordination Control," IEEE/CAA J. of Autom. Sinica, vol. 2, no. 2, pp. 121-133, 2015.

An Overview of Research in Distributed Attitude Coordination Control

Funds:

This work was supported by National Natural Science Foundation of China (61203354) and Industrial Project of Shaanxi Province (2012GY2-34).

  • This paper provides an overview of attitude coordination problems of multi-rigid-body with the goal of promoting research in this area. Theoretical results regarding consensus seeking with different system models, different communication topologies, different control goals and different techniques are summarized. And applications of consensus protocols to multirigid- body coordination are investigated. Finally, some future research directions and open problems are also proposed.

     

  • loading
  • [1]
    Scharf D P, Hadaegh F Y, Ploen S R. A survey of spacecraft formation flying guidance and control. Part II:Control. In:Proceedings of the 2004 American Control Conference. Boston, Massachusetts:IEEE, 2004. 2976-2985
    [2]
    Ren W, Beard R W, Atkins E M. A survey of consensus problems in multi-agent coordination. In:Proceedings of the 2005 American Control Conference. Portland, OR, USA:IEEE, 2005. 1895-1864
    [3]
    Murray R M. Recent research in cooperative control of multivehicle systems. Journal of Dynamic Systems, Measurement, and Control, 2007, 129(5):571-583
    [4]
    Sepulchre R. Consensus on nonlinear spaces. Annual Reviews in Control, 2011, 35(1):56-64
    [5]
    Min Hai-Bo, Liu Yuan, Wang Shi-Cheng, Sun Fu-Chun. An overview on coordination control problem of multi-agent system. Acta Automatica Sinica, 2012, 38(10):1557-1570(in Chinese)
    [6]
    Folta D, Bristow J, Hawkins A, Dell G. NASA's autonomous formation flying technology demonstration, earthobserving-1(EO-1). In:Proceedings of the 1st International Symposium on Formation Flying Missions and Technologies. Centre National d'Etudes Spatiales, 2002. 71-76
    [7]
    Neeck S P, Magner T J, Paules G E. nasa's small satellite missions for earth observation. Acta Astronautica, 2005, 56(1-2):187-192
    [8]
    Lawson P R. The terrestrial planet finder. In:Proceedings of the 2001 IEEE Aerospace Conference. Big Sky, Montana, USA:IEEE, 2001. 4/2005-4/2011
    [9]
    Kang W, Yeh H H. Co-ordinated attitude control of multi-satellite systems. International Journal of Robust and Nonlinear Control, 2002, 12(2-3):185-205
    [10]
    Chakravorty S. Design and Optimal Control of Multi-Spacecraft Interferometric Imaging Systems[Ph. D. dissertation], University of Michigan, Ann Arbor, MI, 2004
    [11]
    Hussein I I. Motion Planning for Multi-Spacecraft Interferometric Imaging Systems.[Ph. D. dissertation], University of Michigan, Ann Arbor, MI, 2005
    [12]
    Joshi S M, Kelkar A G, Wen J T-Y. Robust attitude stabilization of spacecraft using nonlinear quaternion feedback. IEEE Transactions on Automatic Control, 1995, 40(10):1800-1803
    [13]
    Shuster M D. A survey of attitude representations. Journal of the Astronautical Sciences, 1993, 41(4):439-517
    [14]
    Ren W. Distributed leaderless consensus algorithms for networked Euler-Lagrange systems. International Journal of Control, 2009, 82(11):2137-2149
    [15]
    Bakule L. Decentralized control:an overview. Annual Reviews in Control, 2008, 32(1):87-98
    [16]
    Das A, Lewis F L. Distributed adaptive control for synchronization of unknown nonlinear networked systems. Automatica, 2010, 46(12):2014-2021
    [17]
    Cai H, Huang J. The leader-following attitude control of multiple rigid spacecraft systems. Automatica, 2014, 50(4):1109-1115
    [18]
    Panagi P, Polycarpou M M. Decentralized fault tolerant control of a class of interconnected nonlinear systems. IEEE Transactions on Automatic Control, 2011, 56(1):178-184
    [19]
    Jin E D, Jiang X L, Sun Z W. Robust decentralized attitude coordination control of spacecraft formation. Systems and Control Letters, 2008, 57(7):567-577
    [20]
    Cong B L, Liu X D, Chen Z. Distributed attitude synchronization of formation flying via consensus-based virtual structure. Acta Astronautica, 2011, 68(11-12):1973-1986
    [21]
    Liang H Z, Wang J Y, Sun Z W. Robust decentralized coordinated attitude control of spacecraft formation. Acta Astronautica, 2011, 69(5-6):280-288
    [22]
    Yang D P, Liu X D, Gan C, Guo Y H. Distributed adaptive attitude synchronization of multiple spacecraft with external disturbances. In:Proceedings of the 25th Chinese Control and Decision Conference. Guiyang, China:IEEE, 2013. 692-697
    [23]
    Fadakar I, Fidan B, Huissoon J. Robust adaptive attitude synchronization of rigid body networks with unknown inertias. In:Proceedings of the 9th Asian Control Conference. Istanbul, Turkey:IEEE, 2013. 1-6
    [24]
    Zheng Z, Song S M. Autonomous attitude coordinated control for spacecraft formation with input constraint, model uncertainties, and external disturbances. Chinese Journal of Aeronautics, 2014, 27(3):602-612
    [25]
    Chen B S, Wu C S, Jan Y W. Adaptive fuzzy mixed H2/H attitude control of spacecraft. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(4):1343-1359
    [26]
    Zanchettin A M, Calloni A, Lovera M. Robust magnetic attitude control of satellites. IEEE/ASME Transactions on Mechatronics, 2013, 18(4):1259-1268
    [27]
    Lizarralde F,Wen J T. Attitude control without angular velocity measurement:a passivity approach. IEEE Transactions on Automatic Control, 1996, 41(3):468-472
    [28]
    Costic B T, Dawson D M, de Queiroz M S, Kapila V. A quaternion-based adaptive attitude tracking controller without velocity measurements. In:Proceedings of the 39th IEEE Conference on Decision and Control. Sydney, Australia:IEEE, 2000. 2424-2429
    [29]
    Lawton J R, Beard R W. Synchronized multiple spacecraft rotations. Automatica, 2002, 38(8):1359-1364
    [30]
    Bondhus A K, Pettersen K Y, Gravdahl J T. Leader/Follower synchronization of satellite attitude without angular velocity measurements. In:Proceedings of the 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference. Seville, Spain:IEEE, 2005. 7270-7277
    [31]
    Kristiansen R, Loría A, Chaillet A, Nicklasson P J. Spacecraft relative rotation tracking without angular velocity measurements. Automatica, 2009, 45(3):750-756
    [32]
    Mehrabian A R, Tafazoli S, Khorasani K. Coordinated attitude control of spacecraft formation without angular velocity feedback:a decentralized approach. In:Proceedings of the 2009 AIAA Guidance, Navigation, and Control Conference. Chicago, Illinois:AIAA, 2009. 1-15
    [33]
    Abdessameud A, Tayebi A. Attitude synchronization of a spacecraft formation without velocity measurement. In:Proceedings of the 47th IEEE Conference on Decision and Control. Cancun, Mexico:IEEE, 2008. 3719-3724
    [34]
    Abdessameud A, Tayebi A. Decentralized attitude alignment control of spacecraft within a formation without angular velocity measurements. In:Proceedings of the 17th World Congress the International Federation of Automatic Control. Seoul, Korea:IFAC, 2008. 1766-1771
    [35]
    Abdessameud A, Tayebi A. On the coordinated attitude alignment of a group of spacecraft without velocity measurements. In:Proceedings of the 48th IEEE Joint Conference on Decision and Control and 28th Chinese Control Conference. Shanghai, China:IEEE, 2009. 1476-1481
    [36]
    Abdessameud A, Tayebi A. Attitude synchronization of a group of spacecraft without velocity measurements. IEEE Transactions on Automatic Control, 2009, 54(11):2642-2648
    [37]
    Meng Z Y, Ren W, You Z. Decentralised cooperative attitude tracking using modified Rodriguez parameters based on relative attitude information. International Journal of Control, 2010, 83(12):2427-2439
    [38]
    Zou A M, Kumar K D. Adaptive attitude control of spacecraft without velocity measurements using Chebyshev neural network. Acta Astronautica, 2010, 66(5-6):769-779
    [39]
    Zou A M, Kumar K D, Hou Z G. Attitude coordination control for a group of spacecraft without velocity measurements. IEEE Transactions on Control Systems Technology, 2012, 20(5):1160-1174
    [40]
    Gao D, Lv J T, Wang B L. Distributed coordinated attitude control for multiple rigid bodies. Procedia Engineering, 2012, 29:2532-2538
    [41]
    Hu Qing-Lei, Zhou Jia-Kang, Ma Guang-Fu. Angle velocity free attitude synchronization adaptive tracking control for satellite formation flying with time-varying delays. Acta Automatica Sinica, 2012, 38(3):462-468(in Chinese)
    [42]
    Lv J T, Gao D, Meng S M. Attitude synchronization for multiple rigid bodies with time delays. Procedia Engineering, 2012, 29:2539-2544
    [43]
    Wang H L, Xie Y C. A new analysis tool for attitude synchronization of multiple spacecraft with communication delays. In:Proceedings of the 30th Chinese Control Conference. Yantai, China:IEEE, 2011. 4576-4581
    [44]
    Abdessameud A, Tayebi A, Polushin I G. Rigid body attitude synchronization with communication delays. In:Proceedings of the 2012 American Control Conference. Montreal, QC:IEEE, 2012. 3736-3741
    [45]
    Abdessameud A, Tayebi A, Polushin I G. Attitude synchronization of multiple rigid bodies with communication delays. IEEE Transactions on Automatic Control, 2012, 57(9):2405-2411
    [46]
    Zhou J K, Ma G F, Hu Q L. Delay depending decentralized adaptive attitude synchronization tracking control of spacecraft formation. Chinese Journal of Aeronautics, 2012, 25(3):406-415
    [47]
    Zhou Jia-Kang, Hu Qing-Lei, Ma Guang-Fu, Lü Yue-Yong. Adaptive L2-gain cooperative attitude control of satellite formation flying with time-varying delay. Acta Aeronautica et Astronautica Sinica, 2011, 32(2):321-329(in Chinese)
    [48]
    Li G M, Liu L D. Robust adaptive coordinated attitude control problem with unknown communication delays and uncertainties. Procedia Engineering, 2012, 29:1447-1455
    [49]
    Li G M, Liu L D. Coordinated multiple spacecraft attitude control with communication time delays and uncertainties. Chinese Journal of Aeronautics, 2012, 25(5):698-708
    [50]
    Wang H L, Tan S P. Globally convergent attitude controlled synchronization of networked spacecraft on strongly connected graphs. In:Proceedings of the 31st Chinese Control Conference. Hefei, China:IEEE, 2012. 5780-5785
    [51]
    Li J Q, Kumar K D. Decentralized fault-tolerant control for satellite attitude synchronization. IEEE Transactions on Fuzzy Systems, 2012, 20(3):572-586
    [52]
    Zou A M, Kumar K D. Robust attitude coordination control for spacecraft formation flying under actuator failures. Journal of Guidance, Control, and Dynamics, 2012, 35(4):1247-1255
    [53]
    Bošković J D, Li S M, Mehra R K. Robust tracking control design for spacecraft under control input saturation. Journal of Guidance, Control, and Dynamics, 2004, 27(4):627-633
    [54]
    Bang H, Tahk M J, Choi H D. Large angle attitude control of spacecraft with actuator saturation. Control Engineering Practice, 2003, 11(9):989-997
    [55]
    Lv J T, Gao D, Cao X B. Satellite attitude tracking control under control saturation. In:Proceedings of the 2nd International Symposium on Systems and Control in Aerospace and Astronautics. Shenzhen, China:IEEE, 2008. 1-5
    [56]
    Lv Jian-Ting, Ma Guang-Fu, Li Chuan-Jiang. Output feedback controller design for satellite attitude regulation subject to control saturation. Journal of Astronautics, 2008, 29(4):1320-1323(in Chinese)
    [57]
    Lv Jian-Ting, Gao Dai. Coordinated attitude output feedback control of satellite formation flying. Journal of Astronautics, 2010, 31(12):2691-2696(in Chinese)
    [58]
    Lyu J T, Gao D. Attitude synchronization for multiple spacecraft with input constraints. Chinese Journal of Aeronautics, 2014, 27(2):321-327
    [59]
    Bacconi F, Mosca E, Casavola A. Hybrid constrained formation flying control of micro-satellites. IET Control Theory and Applications, 2007, 1(2):513-521
    [60]
    Mehrabian A R, Tafazoli S, Khorasani K. Quaternion-based attitude synchronization and tracking for spacecraft formation subject to sensor and actuator constraints. In:Proceedings of the 2010 AIAA Guidance, Navigation, and Control Conference. Toronto, Ontario Canada:AIAA, 2010. 1-21
    [61]
    Lv Y Y, Hu Q L, Ma G F, Zhou J K. 6 DOF synchronized control for spacecraft formation flying with input constraint and parameter uncertainties. ISA Transactions, 2011, 50(4):573-580
    [62]
    Zhang Bao-Qun, Song Shen-Min, Chen Xing-Lin. Attitude coordination control of formation flying satellites under control saturation. Journal of Astronautics, 2011, 32(5):1060-1069(in Chinese)
    [63]
    Zou A M, Kumar K D. Neural Network-based distributed attitude coordination control for spacecraft formation flying with input saturation. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(7):1155-1162
    [64]
    de Ferrán S X. The ISO Spacecraft. ESA Bulletin, 1991, 84:17-24
    [65]
    Kim Y, Mesbahi M, Singh G, Hadaegh F Y. On the constrained attitude control problem. In:Proceedings of the 2004 AIAA Guidance, Navigation, and Control Conference and Exhibit. Providence, Rhode Island, 2004. 1-23
    [66]
    Kim Y, Mesbahi M. Quadratically constrained attitude control via semidefinite programming. IEEE Transactions on Automatic Control, 2004, 49(5):731-735
    [67]
    Kim Y, Mesbahi M, Singh G, Hadaegh F Y. On the convex parameterization of constrained spacecraft reorientation. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3):1097-1109
    [68]
    Okoloko I, Kim Y. Attitude synchronization of multiple spacecraft with cone avoidance constraints. Systems and Control Letters, 2014, 69:73-79
    [69]
    Koditschek D E, Rimon E. Robot navigation functions on manifolds with boundary. Advances in Applied Mathematics, 1990, 11(4):412-442
    [70]
    Xu R, Cheng X J, Cui H T. Autonomous pointing avoidance of spacecraft attitude maneuver using Backstepping control method. In:Proceedings of the 2011 International Conference on Electric and Electronics:Electrical Engineering and Control, Lecture Notes in Electrical Engineering. Nanchang, China:Springer, 2011, 98:817-825
    [71]
    McInnes C R. Large angle slew maneuvers with autonomous sun vector avoidance. Journal of Guidance, Control, and Dynamics, 1994, 17(4):875-877
    [72]
    Garcia I, How J P. Trajectory optimization for satellite reconfiguration maneuvers with position and attitude constraints. In:Proceedings of the 2005 American Control Conference. 2005. 889-894
    [73]
    Cheng Xiao-Jun, Cui Hu-Tao, Cui Ping-Yuan, Xu Rui. A predictive control algorithm for spacecraft attitude maneuver with non-convex geometric constraint. Journal of Astronautics, 2011, 32(5):1070-1076(in Chinese)
    [74]
    Cui Hu-Tao, Cheng Xiao-Jun. Attitude maneuver control of spacecraft with pointing constraints considering unknown input saturation. Journal of Astronautics, 2013, 34(3):377-383(in Chinese)
    [75]
    Zheng Zhong, Song Shen-Min, Zhang Bao-Qun. Spacecraft safe attitude tracking control by considering attitude forbidden constraint. Systems Engineering and Electronics, 2013, 35(3):574-579
    [76]
    Ren W. Formation keeping and attitude alignment for multiple spacecraft through local interactions. Journal of Guidance, Control, and Dynamics, 2007, 30(2):633-638
    [77]
    Ren W. Distributed attitude synchronization for multiple rigid bodies with Euler-Lagrange equations of motion. In:Proceedings of the 46th IEEE Conference of Decision and Control. New Orleans, LA:IEEE, 2007. 2363-2368
    [78]
    Ren W. Distributed cooperative attitude synchronization and tracking for multiple rigid bodies. IEEE Transactions on Control Systems Technology, 2010, 18(2):383-392
    [79]
    Zhang H B, Mei J, Ma G F. Attitude coordinated tracking for formation spacecraft under a directed graph. In:Proceedings of the 30th Chinese Control Conference. Yantai, China:IEEE, 2011. 4900-4905
    [80]
    Wu B L, Wang D W, Poh E K. Decentralized robust adaptive control for attitude synchronization under directed communication topology. Journal of Guidance, Control, and Dynamics, 2011, 34(4):1276-1282
    [81]
    Li Z K, Duan Z S. Distributed adaptive attitude synchronization of multiple spacecraft. Science China Technological Sciences, 2011, 54(8):1992-1998
    [82]
    Thunberg J, Song W J, Hu X M. Distributed attitude synchronization control of multi-agent systems with directed topologies. In:Proceedings of the 10th World Congress on Intelligent Control and Automation. Beijing, China:IEEE, 2012. 958-963
    [83]
    Meng Z Y, You Z, Li G H, Fan C S. Cooperative attitude control of multiple rigid bodies with multiple time-varying delays and dynamically changing topologies. Mathematical Problems in Engineering, 2010, 2010:Article ID 621594, DOI: 10.1155/2010/621594
    [84]
    Jin E D, Sun Z W. Robust attitude synchronisation controllers design for spacecraft formation. IET Control Theory and Applications, 2009, 3(3):325-339
    [85]
    Bi Peng, Luo Jian-Jun, Zhang Bo. Cooperate control algorithm for spacecraft formation flying based on consensus theory. Journal of Astronautics, 2010, 31(1):70-74(in Chinese)
    [86]
    Sarlette A, Sepulchre R, Leonard N E. Autonomous rigid body attitude synchronization. Automatica, 2009, 45(2):572-577
    [87]
    Zhang Bao-Qun, Song Shen-Min, Chen Xing-Lin. Robust coordinated control for formation flying satellites with time delays and switching topologies. Journal of Astronautics, 2012, 33(7):910-919(in Chinese)
    [88]
    Thunberg J, Song W J, Montijano E, Hong Y G, Hu X M. Distributed attitude synchronization control of multi-agent systems with switching topologies. Automatica, 2014, 50(3):832-840
    [89]
    Song W J, Hong Y G, Hu X M. Distributed relative attitude formation control of multiple rigid-body agents with switching topologies. In:Proceedings of the 32nd Chinese Control Conference. Xi'an, China:IEEE, 2013. 7125-7130
    [90]
    Chen S, Shi P, Zhang W G, Zhao L D. Finite-time consensus on strongly convex balls of Riemannian manifolds with switching directed communication topologies. Journal of Mathematical Analysis and Applications, 2014, 409(2):663-675
    [91]
    Windeknecht T G. Optimal stabilization of rigid body attitude. Journal of Mathematical Analysis and Applications, 1963, 6(2):325-335
    [92]
    Dixon M V, Edelbaum T N, Potter J E, Vandervelde W E. Fuel optimal reorientation of axisymmetric spacecraft. Journal of Spacecraft and Rockets, 1970, 7(11):1345-1351
    [93]
    Vadali S R, Junkins J L. Spacecraft large angle rotational maneuvers with optimal momentum transfer. Journal of the Astronautical Sciences, 1983, 31(2):217-235
    [94]
    VadMi S R, Kraige L G, Junkins J L. New results on the optimal spacecraft attitude maneuver problem. Journal of Guidance, Control, and Dynamics, 1984, 7(3):378-380
    [95]
    Yang C C, Li C L, Wu C J. Minimal energy maneuvering control of a rigid spacecraft with momentum transfer. Journal of the Franklin Institute, 2007, 344(7):991-1005
    [96]
    Zhang Shi-Feng, Qian Shan, Li Peng-Kui. Study on the minimal energy maneuvering control of a rigid spacecraft with momentum transfer. Journal of Astronautics, 2009, 30(4):1504-1509(in Chinese)
    [97]
    Scrivener S L, Thomson R C. Survey of time-optimal attitude maneuvers. Journal of Guidance, Control, and Dynamics, 1994, 17(2):225-233
    [98]
    Yan H. Dynamics and Real-Time Optimal Control of Satellite Attitude and Satellite Formation Systems[Ph. D. dissertation], Texas A&M University, USA, 2006
    [99]
    Dimarogonas D V, Tsiotras P, Kyriakopoulos K J. Leader-follower cooperative attitude control of multiple rigid bodies. Systems and Control Letters, 2009, 58(6):429-435
    [100]
    Ji M, Ferrari-Trecate G, Egerstedt M, Buffa A. Containment control in mobile networks. IEEE Transactions on Automatic Control, 2008, 53(8):1972-1975
    [101]
    Meng Z Y, Ren W, You Z. Distributed finite-time attitude containment control for multiple rigid bodies. Automatica, 2010, 46(12):2092-2099
    [102]
    Zhang An-Hui, Kong Xian-Ren, Zhang Shi-Jie, Wang Feng. Distributed attitude cooperative control with multiple leaders. Journal of Harbin Institute of Technology, 2013, 45(3):1-6(in Chinese)
    [103]
    Yu S H, Yu X H, Shirinzadeh B, Man Z H. Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica, 2005, 41(11):1957-1964
    [104]
    Cao Y C, Ren W, Meng Z Y. Decentralized finite-time sliding mode estimators and their applications in decentralized finite-time formation tracking. Systems & Control Letters, 2010, 59(9):522-529
    [105]
    Jin E D, Sun Z W. Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control. Aerospace Science and Technology, 2008, 12(4):324-330
    [106]
    Zou A M, Kumar K D, Hou Z G, Liu X. Finite-time attitude tracking control for spacecraft using terminal sliding mode and Chebyshev Neural Network. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, 2011, 41(4):950-963
    [107]
    Zou A M, Kumar K D, Hou Z G. Corrections to "Finite-time attitude tracking control for spacecraft using terminal sliding model and Chebyshev Neural Network". IEEE Transactions on Cybernetics, 2013, 43(2):803
    [108]
    Du H B, Li S H, Qian C J. Finite-time attitude tracking control of spacecraft with application to attitude synchronization. IEEE Transactions on Automatic Control, 2011, 56(11):2711-2717
    [109]
    Zou A M, Kumar K D. Distributed attitude coordination control for spacecraft formation flying. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2):1329-1346
    [110]
    Liang H Z, Sun Z W, Wang J Y. Finite-time attitude synchronization controllers design for spacecraft formations via behavior-based approach. Journal of Aerospace Engineering, 2013, 227(11):1737-1753
    [111]
    Liang H Z, Sun Z W, Wang J Y. Robust decentralized attitude control of spacecraft formations under time-varying topologies, model uncertainties and disturbances. Acta Astronautica, 2012, 81(2):445-455
    [112]
    Ma G F, Zhang H B, Mei J. Distributed finite-time attitude regulation control for multiple spacecraft systems. In:Proceedings of the 31st Chinese Control Conference. Hefei, China:IEEE, 2012. 6439-6443
    [113]
    Lyu J T, Gao D. Attitude synchronization for multiple spacecraft with input constraints. Chinese Journal of Aeronautics, 2014, 27(2):321-32758
    [114]
    Zhou N, Xia Y Q, Lu K F. Attitude synchronization of rigid spacecraft using terminal sliding mode. In:Proceedings of the 32nd Chinese Control Conference. Xi'an, China:IEEE, 2013. 706-711
    [115]
    Cortés J. Finite-time convergent gradient flows with applications to network consensus. Automatica, 2006, 42(11):1993-2000
    [116]
    Chen G, Lewis F L, Xie L H. Finite-time distributed consensus via binary control protocols. Automatica, 2011, 47(9):1962-1968
    [117]
    Hui Q. Finite-time rendezvous algorithms for mobile autonomous agents. IEEE Transactions on Automatic Control, 2011, 56(1):207-211
    [118]
    Yu X H, Xu J X. Variable structure systems:towards the 21st century. Lecture Notes in Control and Information Sciences. Berlin, Heidelberg:Springer-Verlag, 2002.
    [119]
    Jin Yong-Qiang, Liu Xiang-Dong, Hou Chao-Zhen. Adaptive sliding mode control of large attitude angle maneuver for spacecraft. Transactions of Beijing Institute of Technology, 2007, 27(5):422-426(in Chinese)
    [120]
    Cong B L, Liu X D, Chen Z. Exponential time-varying sliding mode control for large angle attitude eigenaxis maneuver of rigid spacecraft. Chinese Journal of Aeronautics, 2010, 23(4):447-453
    [121]
    Lu K F, Xia Y Q, Zhu Z, Basin M V. Sliding mode attitude tracking of rigid spacecraft with disturbances. Journal of the Franklin Institute, 2012, 349(2):413-440
    [122]
    Pukdeboon C, Zinober A S I, Thein M-W L. Quasi-continuous higher order sliding-mode controllers for spacecraft-attitude-tracking maneuvers. IEEE Transactions on Industrial Electronics, 2010, 57(4):1436-1444
    [123]
    Ma K M. Comments on "Quasi-continuous higher order sliding-mode controllers for spacecraft-attitude-tracking maneuvers". IEEE Transactions on Industrial Electronics, 2012, 60(7):2771-2773
    [124]
    Wu Y H, Cao X B, Zheng P F, Zeng Z K. Variable structure-based decentralized relative attitude-coordinated control for satellite formation. IEEE Aerospace and Electronic Systems Magazine, 2012, 27(12):18-25
    [125]
    Wu B L, Wang D W, Poh E K. Decentralized sliding-mode control for attitude synchronization in spacecraft formation. International Journal of Robust and Nonlinear Control, 2013, 23(11):1183-1197
    [126]
    Yang D P, Liu X D, Li Z K, Guo Y H. Distributed adaptive sliding mode control for attitude tracking of multiple spacecraft. In:Proceedings of the 32nd Chinese Control Conference. Xi'an, China:IEEE, 2013. 6917-6922
    [127]
    Zhou Y R, Huo W. Quaternion-based direct adaptive fuzzy predictive control for attitude tracking of satellites. In:Proceedings of the 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems. Shanghai China:IEEE, 2009. 510-516
    [128]
    Guan P, Liu X H, Zhang W, Xue L. The direct adaptive fuzzy robust control for satellite attitude control. In:Proceedings of the 10th World Congress on Intelligent Control and Automation. Beijing, China:IEEE, 2012. 36-41
    [129]
    Rumelhart D E, McClelland J L. Parallel Distributed Processing:Explorations in the Microstructure of Cognition, Vol. 1:Foundations. Cambridge, MA:MIT Press, 1986. 318-362
    [130]
    Lee T T, Jeng J T. The Chebyshev-polynomials-based unified model neural networks for function approximation. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 1998, 28(6):925-935
    [131]
    Hou Z G, Cheng L, Tan M. Decentralized robust adaptive control for the multiagent system consensus problem using Neural Networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 2009, 39(3):636-647
    [132]
    Cheng L, Hou Z G, Tan M, Lin Y Z, Zhang W J. Neural-networkbased adaptive leader-following control for multiagent systems with uncertainties. IEEE Transactions on Neural Networks, 2010, 21(8):1351-1358
    [133]
    Zou A M, Kumar K D, Hou Z G. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks. IEEE Transactions on Neural Networks, 2010, 21(9):1457-1471
    [134]
    Zou A M. Distributed attitude synchronization and tracking control for multiple rigid bodies. IEEE Transactions on Control Systems Technology, 2014, 22(2):478-490
    [135]
    Zou A M, Kumar K D. Quaternion-based distributed output feedback attitude coordination control for spacecraft formation flying. Journal of Guidance, Control, and Dynamics, 2013, 36(2):548-556
    [136]
    Ball R S. A Treatise on the Theory of Screws. Cambridge:Cambridge University Press, 1900.
    [137]
    Funda J, Taylor R H, Paul R P. On homogeneous transforms, quaternions, and computational efficiency. IEEE Transactions on Robotics and Automation, 1990, 6(3):382-388
    [138]
    Yang A T. Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanisms[Ph. D. dissertation], Columbia University, New York, USA, 1963.
    [139]
    Aspragathos N A, Dimitros J K. A comparative study of three methods for robot kinematics. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 1998, 28(2):135-145
    [140]
    Dooley J R, McCarthy J M. Spatial rigid body dynamics using dual quaternion components. In:Proceedings of the 1991 IEEE International Conference on Robotics and Automation. Sacramento, California:IEEE, 1991. 90-95
    [141]
    Zhang F, Duan G R. Robust integrated translation and rotation finitetime maneuver of a rigid spacecraft based on dual quaternion. In:Proceedings of the 2011 AIAA Guidance, Navigation, and Control Conference. Portland, Oregon:the 2011 AIAA, 2011. 1-17
    [142]
    Wu J J, Liu K, Han D P. Adaptive sliding mode control for six-DOF relative motion of spacecraft with input constraint. Acta Astronautica, 2013, 87:64-76
    [143]
    Wang X K, Yu C B, Lin Z Y. A dual quaternion solution to attitude and position control for rigid-body coordination. IEEE Transactions on Robotics, 2012, 28(5):1162-1170
    [144]
    Sarlette A, Sepulchre R, Leonard N E. Cooperative attitude synchronization in satellite swarms:a consensus approach. In:Proceedings of the 17th IFAC Symposium on Automatic Control Aerospace. Toulouse, France:IFAC, 2007. 223-228
    [145]
    Igarashi Y, Hatanaka T, Fujita M, Spong M W. Passivity-based attitude synchronization in SE(3). IEEE Transactions on Control Systems Technology, 2009, 17(5):1119-1134
    [146]
    Chang I, Park S Y, Choi K H. Decentralized coordinated attitude control for satellite formation flying via the state-dependent Riccati equation technique. International Journal of Non-Linear Mechanics, 2009, 44(8):891-904
    [147]
    Jung J, Park S Y, Kim S W, Eun Y H, Chang Y K. Hardware-in-theloop simulations of spacecraft attitude synchronization using the State- Dependent Riccati Equation technique. Advances in Space Research, 2013, 51(3):434-449
    [148]
    Felicetti L, Palmerini G B. Coordinated attitude control for multiple heterogeneous satellites missions. In:Proceedings of the 2011 AIAA/AAS Astrodynamics Specialist Conference. Minneapolis, Minnesota:AIAA, 2012. 1-19
    [149]
    Min H B, Wang S C, Sun F C, Gao Z J, Zhang J S. Decentralized adaptive attitude synchronization of spacecraft formation. Systems and Control Letters, 2012, 61(1):238-246
    [150]
    Mayhew C G, Sanfelice R G, Sheng J, Arcak M, Teel A R. Quaternionbased hybrid feedback for robust global attitude synchronization. IEEE Transactions on Automatic Control, 2012, 57(8):2122-2127
    [151]
    Sarlette A, Lageman C. Synchronization with partial state coupling on SO(n). SIAM Journal on Control and Optimization, 2012, 50(6):3242-3268
    [152]
    Mayhew C G, Sanfelice R G, Teel A R. On path-lifting mechanisms and unwinding in quaternion-based attitude control. IEEE Transactions on Automatic Control, 2013, 58(5):1179-1191
    [153]
    Zhang K W, Demetriou M A. Attitude synchronization of spacecraft formation with adaptation of consensus penalty terms. In:Proceedings of the 2013 European Control Conference. Zürich, Switzerland:EUCA, 2013. 3833-3838
    [154]
    Zheng Z, Song S M. Attitude coordination control of spacecraft formation flying using rotation matrix. In:Proceedings of the 32nd Chinese Control Conference. Xi'an, China:IEEE, 2013. 6891-6895
    [155]
    Huang M Y, Manton J H. Coordination and consensus of networked agents with noisy measurement:Stochastic algorithms and asymptotic behavior. SIAM Journal on Control and Optimization, 2009, 48(1):134-161
    [156]
    Kar S, Moura J M F. Distributed consensus algorithms in sensor networks with imperfect communication:link failures and channel noise. IEEE Transactions on Signal Processing, 2009, 57(1):355-369
    [157]
    Li T, Zhang J F. Consensus conditions of multi-agent systems with time-varying topologies and stochastic communication noises. IEEE Transactions on Automatic Control, 2010, 55(9):2043-2057
    [158]
    Li T, Zhang J F. Mean square average-consensus under measurement noises and fixed topologies:necessary and sufficient conditions. Automatica, 2009, 45(8):1929-1936
    [159]
    Cheng L, Hou Z G, Tan M. A mean square consensus protocol for linear multi-agent systems with communication noises and fixed topologies. IEEE Transactions on Automatic Control, 2014, 59(1):261-267
    [160]
    Wang J, Elia N. Distributed averaging under constraints on information exchange:emergence of Lévy flights. IEEE Transactions on Automatic Control, 2012, 57(10):2435-2449
    [161]
    Wang J, Elia N. Mitigation of complex behavior over networked systems:analysis of spatially invariant structures. Automatica, 2013, 49(6):1626-1638
    [162]
    Aysal T C, Barner K E. Convergence of consensus models with stochastic disturbances. IEEE Transactions on Information Theory, 2010, 56(8):4101-4113
    [163]
    Medvedev G S. Stochastic stability of continuous time consensus protocols. SIAM Journal on Control and Optimization, 2012, 50(4):1859-1885

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1138) PDF downloads(15) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return