A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 2 Issue 4
Oct.  2015

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Xia Wang and Jun Zhao, "Logic-based Reset Adaptation Design for Improving Transient Performance of Nonlinear Systems," IEEE/CAA J. of Autom. Sinica, vol. 2, no. 4, pp. 440-448, 2015.
Citation: Xia Wang and Jun Zhao, "Logic-based Reset Adaptation Design for Improving Transient Performance of Nonlinear Systems," IEEE/CAA J. of Autom. Sinica, vol. 2, no. 4, pp. 440-448, 2015.

Logic-based Reset Adaptation Design for Improving Transient Performance of Nonlinear Systems

Funds:

This work was supported by National Natural Science Foundation of China (61403118, 61174073, 61233002, 11271106), the IAPI Fundamental Research Funds (201 3ZCX03-01), the Natural Science Foundation of Hebei Province (F20152010 88), and the Science and Technology Foundation of Hebei Province (QN20131 056).

  • In this paper, logic-based switching and resetting principles are presented to devise adaptive control laws for a class of uncertain nonlinear systems in order to ensure both the transient bound and the asymptotical convergence of the state. A novel supervisor is constructed to decide when to reset the estimation parameter with the pre-given estimation value. A benchmark example is presented to demonstrate the effectiveness of the approach.

     

  • loading
  • [1]
    Krstic M, Kanellakopoulos I, Kokotovic P V. Nonlinear and Adaptive Control Design. New York: Addison-Wesley, 1995.
    [2]
    Å ström K J, Wittenmark B. Adaptive Control (2nd edition). USA: Addison Wesley, 1994.
    [3]
    Cao C Y, Hovakimyan N. Design and analysis of a novel L1 adaptive control architecture with guaranteed transient performance. IEEE Transactions on Automatic Control, 2008, 53(2): 586-591
    [4]
    Sun J. A modified model reference adaptive control scheme for improved transient performance. IEEE Transactions on Automatic Control, 1993, 38(8): 1255-1259
    [5]
    Ydstie B E. Transient performance and robustness of direct adaptive control. IEEE Transactions on Automatic Control, 1992, 37(8): 1091-1105
    [6]
    Anderson B D O, Brinsmead T S, De Bruyne F, Hespanha J, Liberzon D, Morse A S. Multiple model adaptive control. Part 1: finite controller coverings. International Journal of Robust and Nonlinear Control, 2000, 10(11-12): 909-929
    [7]
    Hespanha J, Liberzon S, Stephen M A, Anderson B D O, Brinsmead T S, De Bruyne F. Multiple model adaptive control. Part 2: switching. International Journal of Robust and Nonlinear Control, 2001, 11(5): 479 -496
    [8]
    Narendra K S, Balakrishnan J. Adaptive control using multiple models. IEEE Transactions on Automatic Control, 1997, 42(2): 171-187
    [9]
    Bayard D S, Spanos J, Rahman Z. A result on exponential tracking error convergence and persistent excitation. EEE Transactions on Automatic Control, 1998, 43(9): 1334-1338
    [10]
    Ioannou P A, Sun J. Robust Adaptive Control. Upper Saddle River, NJ: Prentice Hall, 1996.
    [11]
    Ilchmann A, Ryan E P, Townsend P. Tracking control with prescribed transient behaviour for systems of known relative degree. Systems and Control Letters, 2006, 55(5): 396-406
    [12]
    Bechlioulis C P, Rovithakis G A. Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems. Automatica, 2009, 45(2): 532-538
    [13]
    Bechlioulis C P, Rovithakis G A. A priori guaranteed evolution within the neural network approximation set and robustness expansion via prescribed performance control. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(4): 669-675
    [14]
    Wang W, Wen C Y. Adaptive actuator failure compensation control of uncertain nonlinear systems with guaranteed transient performance. Automatica, 2010, 46(12): 2082-2091
    [15]
    Liu T F, Hill D J, Wang C. Dissipativity-based switching adaptive control. IEEE Transactions on Automatic Control, 2011, 56(3): 660-665
    [16]
    Fu M Y, Barmish B. Adaptive stabilization of linear systems via switching control. IEEE Transactions on Automatic Control, 1986, 31(12): 1097-1103
    [17]
    Branicky M S. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Transactions on Automatic Control, 1998, 43(4): 475-482
    [18]
    Long L J, Zhao J. H control of switched nonlinear systems in p-normal form using multiple Lyapunov functions. IEEE Transactions on Automatic Control, 2012, 57(5): 1285-1291
    [19]
    Sun X M, Wang W. Integral input-to-state stability for hybrid delayed systems with unstable continuous dynamics. Automatica, 2012, 48(9): 2359-2364
    [20]
    Ma R C, Zhao J. Backstepping design for global stabilization of switched nonlinear systems in lower triangular form under arbitrary switchings. Automatica, 2010, 46(11): 1819-1823
    [21]
    Wang R, Liu G P, Wang W, Rees D, Zhao Y B. H control for networked predictive control systems based on the switched Lyapunov function method. IEEE Transactions on Industrial Electronics, 2010, 57(10): 3565-3571
    [22]
    Villaverde A F, Blas A B, Carrasco J, Torrico A B. Reset control for passive bilateral teleoperation. IEEE Transactions on Industrial Electronics, 2011, 58(7): 3037-3045
    [23]
    Bakkeheim J, Johansen T A, Smogeli O N, Sorensen A J. Lyapunovbased integrator resetting with application to marine thruster control. IEEE Transactions on Control Systems Technology, 2008, 16(5): 908-917
    [24]
    Aangenent W H T M, Witvoet G, Heemels W P M H, van de Molengraft M J G, Steinbuch M. Performance analysis of reset control systems. International Journal of Robust and Nonlinear Control, 2010, 20(11): 1213-1233
    [25]
    Beker O, Hollot C V, Chait Y. Plant with integrator: an example of reset control overcoming limitations of linear feedback. IEEE Transactions on Automatic Control, 2001, 46(11): 1797-1799
    [26]
    Guo Y Q, Wang Y Y, Xie L H, Zheng J C. Stability analysis and design of reset systems: theory and an application. Automatica, 2009, 45(2): 492-497
    [27]
    Carrasco J, Banos A, van der Schaft A. A passivity-based approach to reset control systems stability. Systems and Control Letters, 2010, 59(1): 18-24
    [28]
    Beker O, Hollot C V, Chait Y, Han H. Fundamental properties of reset control systems. Automatica, 2004, 40(6): 905-915
    [29]
    Banos A, Carrasco J, Barreiro A. Reset times-dependent stability of reset control systems. IEEE Transactions on Automatic Control, 2011, 56(1): 217-223
    [30]
    Feng J E, Tin C, Poon C S. A dual adaptive control theory inspired by Hebbian associative learning. In: Proceedings of the 48th IEEE Conference on Decision and Control. Shanghai, China: IEEE, 2009. 4505-4510
    [31]
    Cong B L, Liu X D, Chen Z. Backstepping based adaptive sliding mode control for spacecraft attitude maneuvers. In: Proceedings of the 2012 UKACC International Conference on Control. Cardiff, England: IEEE, 2012. 1046-1051
    [32]
    Tao G. Adaptive Control Design and Analysis. Hoboken, New Jersey: Wiley-IEEE Press, 2003.
    [33]
    Kuhnen K, Krejcí P. An adaptive gradient law with projection for nonsmooth convex boundaries. European Journal of Control, 2006, 12(6): 606-619
    [34]
    Adetola V, Guay M. Finite-time parameter estimation in adaptive control of nonlinear systems. IEEE Transactions on Automatic Control, 2008, 53(3): 807-811
    [35]
    Khalil H K. Nonlinear Systems (3rd edition). Upper Saddle River: Prentice Hall, 2001.
    [36]
    Zheng D. Linear System Theory. Beijing, China: John Wiley and Sons, 2005.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1146) PDF downloads(6) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return