A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 7 Issue 1
Jan.  2020

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Xian-Ming Zhang, Qing-Long Han, Xiaohua Ge, Derui Ding, Lei Ding, Dong Yue and Chen Peng, "Networked Control Systems: A Survey of Trends and Techniques," IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 1-17, Jan. 2020. doi: 10.1109/JAS.2019.1911651
Citation: Xian-Ming Zhang, Qing-Long Han, Xiaohua Ge, Derui Ding, Lei Ding, Dong Yue and Chen Peng, "Networked Control Systems: A Survey of Trends and Techniques," IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 1-17, Jan. 2020. doi: 10.1109/JAS.2019.1911651

Networked Control Systems: A Survey of Trends and Techniques

doi: 10.1109/JAS.2019.1911651
Funds:  This work was supported in part by the Australian Research Council Discovery Project (DP160103567)
More Information
  • Networked control systems are spatially distributed systems in which the communication between sensors, actuators, and controllers occurs through a shared band-limited digital communication network. Several advantages of the network architectures include reduced system wiring, plug and play devices, increased system agility, and ease of system diagnosis and maintenance. Consequently, networked control is the current trend for industrial automation and has ever-increasing applications in a wide range of areas, such as smart grids, manufacturing systems, process control, automobiles, automated highway systems, and unmanned aerial vehicles. The modelling, analysis, and control of networked control systems have received considerable attention in the last two decades. The ‘control over networks’ is one of the key research directions for networked control systems. This paper aims at presenting a survey of trends and techniques in networked control systems from the perspective of ‘control over networks’, providing a snapshot of five control issues: sampled-data control, quantization control, networked control, event-triggered control, and security control. Some challenging issues are suggested to direct the future research.

     

  • loading
  • 1A function $\alpha(\cdot) $ is said to be of class ${\cal{K}}_{\infty} $ if it is continuous, strictly increasing and satisfies $\lim_{s\rightarrow\infty}\alpha(s) = \infty $ and $\alpha(0) = 0 $.
  • [1]
    K. D. Kim and P. R. Kumar, " Cyber-physical systems: a perspective at the centennial,” Proc. IEEE, vol. 100, no. S, pp. 1287–1308, May 2012.
    [2]
    L. Ding, Q.-L. Han, L. Y. Wang, and E. Sindi, " Distributed cooperative optimal control of DC microgrids with communication delays,” IEEE Trans. Ind. Inform., vol. 14, no. 9, pp. 3924–3935, Sep. 2018. doi: 10.1109/TII.2018.2799239
    [3]
    H. Sandberg, S. Amin, and K. H. Johansson, " Cyberphysical security in networked control systems: an introduction to the issue,” IEEE Control Syst. Mag., vol. 35, no. 1, pp. 20–23, Feb. 2015. doi: 10.1109/MCS.2014.2364708
    [4]
    J. P. Hespanha, P. Naghshtabrizi, and Y. G. Xu, " A survey of recent results in networked control systems,” Proc. IEEE, vol. 95, no. 1, pp. 138–162, Jan. 2007. doi: 10.1109/JPROC.2006.887288
    [5]
    Y.-L. Wang and Q.-L. Han, " Network-based modelling and dynamic output feedback control for unmanned marine vehicles in network environments,” Automatica, vol. 91, pp. 43–53, May 2018. doi: 10.1016/j.automatica.2018.01.026
    [6]
    X.-M. Zhang and Q.-L. Han, " Network-based H filtering using a logic jumping-like trigger,” Automatica, vol. 49, no. 5, pp. 1428–1435, May 2013. doi: 10.1016/j.automatica.2013.01.060
    [7]
    R. A. Gupta and M. Y. Chow, " Networked control system: overview and research trends,” IEEE Trans. Ind. Electron., vol. 57, no. 7, pp. 2527–535, Jul. 2010. doi: 10.1109/TIE.2009.2035462
    [8]
    X.-M. Zhang, Q.-L. Han, and X. Yu, " Survey on recent advances in networked control systems,” IEEE Trans. Ind. Inform., vol. 12, no. 5, pp. 1740–1752, Oct. 2016. doi: 10.1109/TII.2015.2506545
    [9]
    X. Ge, F. Yang, and Q.-L. Han, " Distributed networked control systems: a brief overview,” Inf. Sci., vol. 380, pp. 117–131, Feb. 2017. doi: 10.1016/j.ins.2015.07.047
    [10]
    M. S. Mahmoud and M. M. Hamdan, " Fundamental issues in networked control systems,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 5, pp. 902–922, Sep. 2018. doi: 10.1109/JAS.2018.7511162
    [11]
    R. M. Murray, Control in an Information Rich World: Report of the Panel on Future Directions in Control, Dynamics, and Systems. Philadelphia, PA: SIAM, 2003.
    [12]
    Q. Song, F. Liu, G. H. Wen, J. D. Cao, and Y. Tang, " Synchronization of coupled harmonic oscillators via sampled position data control,” IEEE Trans. Circuits Syst. I: Reg. Pap., vol. 63, no. 7, pp. 1079–1088, Jul. 2016. doi: 10.1109/TCSI.2016.2552718
    [13]
    D. Zhang, Q.-L. Han, and X. Jia, " Network-based output tracking control for a class of T-S fuzzy systems that can not be stabilized by nondelayed output feedback controllers,” IEEE Trans. Cybern., vol. 45, no. 8, pp. 1511–1524, Aug. 2015. doi: 10.1109/TCYB.2014.2354421
    [14]
    P. Tabuada, " Event-triggered real-time scheduling of stabilizing control tasks,” IEEE Trans. Autom. Control, vol. 52, no. 9, pp. 1680–1685, Sep. 2007. doi: 10.1109/TAC.2007.904277
    [15]
    D. P. Borgers and W. P. M. H. Heemels, " Event-separation properties of event-triggered control systems,” IEEE Trans. Autom. Control, vol. 59, no. 10, pp. 2644–2656, Oct. 2014. doi: 10.1109/TAC.2014.2325272
    [16]
    D. Yue, E. Tian, and Q.-L. Han, " A delay system method for designing event-triggered controllers of networked control systems,” IEEE Trans. Autom. Control, vol. 58, no. 2, pp. 475–481, Feb. 2013. doi: 10.1109/TAC.2012.2206694
    [17]
    S. Kuvshinkova, SQL slammer worm lessons learned for consideration by the electricity sector, North Amer. Elect. Rel. Council, Atlanta, GA, USA, NIST SP800-53, Jun. 2003.
    [18]
    J. Slay and M. Miller, " Lessons learned from the Maroochy water breach, ” in Critical Infrastructure Protection, E. Goetz and S. Shenoi, Eds. Boston, MA, USA: Springer, 2008, pp. 73–82.
    [19]
    J. Farwell and R. Rohozinski, " Stuxnet and the future of cyber war,” Survival, vol. 53, no. 1, pp. 23–40, Jan. 2011. doi: 10.1080/00396338.2011.555586
    [20]
    Y. L. Mo and B. Sinopoli, " Secure control against replay attacks, ” in Proc. 47th Annu. Allerton Conf. Communication, Control, and Computing, Monticello, USA, 2009, pp. 911–918.
    [21]
    S. Amin, A. A. Cárdenas, and S. S. Sastry, " Safe and secure networked control systems under denial-of-service attacks, ” in Proc. 12th Int. Conf. Hybrid Systems: Computation and Control, San Francisco, CA, USA, 2009, pp. 31–45.
    [22]
    A. Teixeira, I. Shames, H. Sandberg, and K. H. Johansson, " A secure control framework for resource-limited adversaries,” Automatica, vol. 51, pp. 135–148, Jan. 2015. doi: 10.1016/j.automatica.2014.10.067
    [23]
    V. S. Dolk, P. Tesi, C. De Persis, and W. P. M. H. Heemels, " Event-triggered control systems under denial-of-service attacks,” IEEE Trans. Control Netw. Syst., vol. 4, no. 1, pp. 93–105, Mar. 2017. doi: 10.1109/TCNS.2016.2613445
    [24]
    E. Mousavinejad, F. Yang, Q.-L. Han, and L. Vlacic, " A novel cyber attack detection method in networked control systems,” IEEE Trans. Cybern., vol. 48, no. 11, pp. 3254–3264, Nov. 2018. doi: 10.1109/TCYB.2018.2843358
    [25]
    D. Ding, Q.-L. Han, Y. Xiang, X. Ge, and X.-M. Zhang, " A survey on security control and attack detection for industrial cyber-physical systems,” Neurocomputing, vol. 275, pp. 1674–1683, Jan. 1674.
    [26]
    X. Ge, Q.-L. Han, and X.-M. Zhang, " Achieving cluster formation of multi-agent systems under aperiodic sampling and communication delays,” IEEE Trans. Ind. Electron., vol. 65, no. 4, pp. 3417–3426, Apr. 2018. doi: 10.1109/TIE.2017.2752148
    [27]
    T. W. Chen, and B. A. Francis, Optimal Sampled-Data Control Systems, Berlin, Heidelberg: Springer, 1993.
    [28]
    K. J. Åström and B. Wittenmark, Computer-Controlled Systems: theory and Design, 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1997.
    [29]
    L. Hetel, C. Fiter, H. Omran, A. Seuret, E. Fridman, J.-P. Richard, and S. I. Niculescu, " Recent developments on the stability of systems with aperiodic sampling: an overview,” Automatica, vol. 76, pp. 309–335, Feb. 2017. doi: 10.1016/j.automatica.2016.10.023
    [30]
    X. Ge, Q.-L. Han, D. Ding, X.-M. Zhang, and B. Ning, " A survey on recent advances in distributed sampled-data cooperative control of multi-agent systems,” Neurocomputing, vol. 275, pp. 1684–1701, Jan. 1684.
    [31]
    L. Mirkin, " Some remarks on the use of time-varying delay to model sample-and-hold circuits,” IEEE Trans. Autom. Control, vol. 52, no. 6, pp. 1109–1112, Jun. 2007. doi: 10.1109/TAC.2007.899053
    [32]
    P. Naghshtabrizi, J. P. Hespanha, and A. R. Teel, " Exponential stability of impulsive systems with application to uncertain sampled-data systems,” Syst. Control Lett., vol. 57, no. 5, pp. 378–385, May 2008. doi: 10.1016/j.sysconle.2007.10.009
    [33]
    E. Fridman, " A refined input delay approach to sampled-data control,” Automatica, vol. 46, no. 2, pp. 421–427, Feb. 2010. doi: 10.1016/j.automatica.2009.11.017
    [34]
    K. Liu and E. Fridman, " Wirtinger's inequality and Lyapunov-based sampled-data stabilization,” Automatica, vol. 48, no. 1, pp. 102–108, Jan. 2012. doi: 10.1016/j.automatica.2011.09.029
    [35]
    A. Seuret, " A novel stability analysis of linear systems under asynchronous samplings,” Automatica, vol. 48, no. 1, pp. 177–182, Jan. 2012. doi: 10.1016/j.automatica.2011.09.033
    [36]
    H.-B. Zeng, K. L. Teo, and Y. He, " A new looped-functional for stability analysis of sampled-data systems,” Automatica, vol. 82, pp. 328–331, Aug. 2017. doi: 10.1016/j.automatica.2017.04.051
    [37]
    A. Seuret and F. Gouaisbaut, " Hierarchy of LMI conditions for the stability analysis of time-delay systems,” Syst. Control Lett., vol. 81, pp. 1–7, Jul. 2015. doi: 10.1016/j.sysconle.2015.03.007
    [38]
    D. Ding, Z. Wang, D. Ho, and G. Wei, " Distributed recursive filtering for stochastic systems under uniform quantizations and deception attacks through sensor networks,” Automatica, vol. 78, pp. 231–240, Apr. 2017. doi: 10.1016/j.automatica.2016.12.026
    [39]
    N. Elia and S. K. Mitter, " Stabilization of linear systems with limited information,” IEEE Trans. Autom. Control, vol. 46, no. 9, pp. 1384–1400, Sep. 2001. doi: 10.1109/9.948466
    [40]
    M. Y. Fu and L. H. Xie, " The sector bound approach to quantized feedback control,” IEEE Trans. Autom. Control, vol. 50, no. 11, pp. 1698–1711, Nov. 2005. doi: 10.1109/TAC.2005.858689
    [41]
    A. J. Rojas and F. Lotero, " Signal-to-noise ratio limited output feedback control subject to channel input quantization,” IEEE Trans. Autom. Control, vol. 60, no. 2, pp. 475–479, Feb. 2015. doi: 10.1109/TAC.2014.2327452
    [42]
    E. Fridman and M. Dambrine, " Control under quantization, saturation and delay: an LMI approach,” Automatica, vol. 45, no. 10, pp. 2258–2264, Oct. 2009. doi: 10.1016/j.automatica.2009.05.020
    [43]
    L. Zou, Z. Wang, Q.-L. Han, and D. Zhou, " Ultimate boundedness control for networked systems with try-once-discard protocol and uniform quantization effects,” IEEE Trans. Autom. Control, vol. 62, no. 12, pp. 6582–6588, Dec. 2017. doi: 10.1109/TAC.2017.2713353
    [44]
    H. Xu, Q. M. Zhao, and S. Jagannathan, " Finite-horizon near-optimal output feedback neural network control of quantized nonlinear discrete-time systems with input constraint,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 8, pp. 1776–1788, Aug. 2015. doi: 10.1109/TNNLS.2015.2409301
    [45]
    M. Q. Shen, S. K. Nguang, C. K. Ahn, and Q.-G. Wang, " Robust H2 control of linear systems with mismatched quantization,” IEEE Trans. Autom. Control, vol. 64, no. 4, pp. 1702–1709, Apr. 2019. doi: 10.1109/TAC.2018.2856899
    [46]
    Y. Meng, T. Li, and J.-F. Zhang, " Coordination over multi-agent networks with unmeasurable states and finite-level quantization,” IEEE Trans. Autom. Control, vol. 62, no. 9, pp. 4647–4653, Sep. 2017. doi: 10.1109/TAC.2016.2627179
    [47]
    D. Thanou, E. Kokiopoulou, Y. Pu, and P. Frossard, " Distributed average consensus with quantization refinement,” IEEE Trans. Signal Process., vol. 61, no. 1, pp. 194–205, Jan. 2013. doi: 10.1109/TSP.2012.2223692
    [48]
    T. F. Liu, Z.-P. Jiang, and D. J. Hill, " Small-gain based output-feedback controller design for a class of nonlinear systems with actuator dynamic quantization,” IEEE Trans. Autom. Control, vol. 57, no. 5, pp. 1326–1332, May 2012. doi: 10.1109/TAC.2012.2191870
    [49]
    T. F. Liu and Z.-P. Jiang, " Event-triggered control of nonlinear systems with state quantization,” IEEE Trans. Autom. Control, vol. 64, no. 2, pp. 797–803, Feb. 2019.
    [50]
    M. Abdelrahim, V. S. Dolk, and W. P. M. H. Heemels, " Event-triggered quantized control for input-to-state stabilization of linear systems with distributed output sensors, ” IEEE Trans. Autom. Control, to be published. doi: 10.1109/TAC.2019.2900338
    [51]
    Y. Sharon and D. Liberzon, " Input to state stabilizing controller for systems with coarse quantization,” IEEE Trans. Autom. Control, vol. 57, no. 4, pp. 830–844, Apr. 2012. doi: 10.1109/TAC.2011.2166293
    [52]
    D. Ding, Q.-L. Han, Z. Wang, and X. Ge, " A survey on model-based distributed control and filtering for industrial cyber-physical systems,” IEEE Trans. Ind. Inform., vol. 15, no. 5, pp. 2483–2499, May 2019. doi: 10.1109/TII.2019.2905295
    [53]
    D. Ding, Z. Wang, Q.-L. Han, and G. Wei, " Neural-network-based output-feedback control under Round-Robin scheduling protocols,” IEEE Trans. Cybern., vol. 49, no. 6, pp. 2372–2384, Jun. 2019. doi: 10.1109/TCYB.2018.2827037
    [54]
    J. F. Wang and C. F. Liu, " Stabilization of uncertain systems with Markovian modes of time delay and quantization density,” IEEE/CAA J. of Autom. Sinica, vol. 5, no. 2, pp. 463–470, Mar. 2018. doi: 10.1109/JAS.2017.7510823
    [55]
    H. J. Gao and T. W. Chen, " A new approach to quantized feedback control systems,” Automatica, vol. 44, no. 2, pp. 534–542, Feb. 2008. doi: 10.1016/j.automatica.2007.06.015
    [56]
    L. X. Zhang, Z. P. Ning, and W. X. Zheng, " Observer-based control for piecewise-affine systems with both input and output quantization,” IEEE Trans. Autom. Control, vol. 62, no. 11, pp. 5858–5865, Nov. 2017. doi: 10.1109/TAC.2016.2641585
    [57]
    G. Feng, " Stability analysis of piecewise discrete-time linear systems,” IEEE Trans. Autom. Control, vol. 47, no. 7, pp. 1108–1112, Jul. 2002. doi: 10.1109/TAC.2002.800666
    [58]
    Z. D. Wang, H. L. Dong, B. Shen, and H. J. Gao, " Finite-horizon H filtering with missing measurements and quantization effects,” IEEE Trans. Autom. Control, vol. 58, no. 7, pp. 1707–1718, Jul. 2013. doi: 10.1109/TAC.2013.2241492
    [59]
    C. B. Wen, Z. D. Wang, Q. Y. Liu, and F. E. Alsaadi, " Recursive distributed filtering for a class of state-saturated systems with fading measurements and quantization effects,” IEEE Trans. Syst. Man, Cybern.: syst., vol. 48, no. 6, pp. 930–941, Jun. 2018. doi: 10.1109/TSMC.2016.2629464
    [60]
    M. Liu, D. W. C. Ho, and Y. G. Niu, " Robust filtering design for stochastic system with mode-dependent output quantization,” IEEE Trans. Signal Process., vol. 58, no. 12, pp. 6410–6416, Dec. 2010. doi: 10.1109/TSP.2010.2070496
    [61]
    B. Zhou, G. R. Duan, and J. Lam, " On the absolute stability approach to quantized feedback control,” Automatica, vol. 46, no. 2, pp. 337–346, Feb. 2010. doi: 10.1016/j.automatica.2009.10.039
    [62]
    C. L. Wang, C. Y. Wen, Y. Lin, and W. Wang, " Decentralized adaptive tracking control for a class of interconnected nonlinear systems with input quantization,” Automatica, vol. 81, pp. 359–368, Jul. 2017. doi: 10.1016/j.automatica.2017.03.010
    [63]
    J. Zhou, C. Y. Wen, W. Wang, and F. Yang, " Adaptive backstepping control of nonlinear uncertain systems with quantized states, ” IEEE Trans. Autom. Control, to be published. doi: 10.1109/TAC.2019.2906931
    [64]
    F. Y. Wang and D. R. Liu, Networked Control Systems: Theory and Applications. London, U.K.: Springer-Verlag, 2008.
    [65]
    J. Lunze, Control Theory of Digitally Networked Dynamic Systems. New York, USA: Springer, 2014.
    [66]
    J. Baillieul and P. J. Antsaklis, " Control and communication challenges in networked real-time systems,” Proc. IEEE, vol. 95, no. 1, pp. 9–28, Jan. 2007. doi: 10.1109/JPROC.2006.887290
    [67]
    L. X. Zhang, H. J. Gao, and O. Kaynak, " Network-induced constraints in networked control systems-a survey,” IEEE Trans. Ind. Inform., vol. 9, no. 1, pp. 403–416, Feb. 2013. doi: 10.1109/TII.2012.2219540
    [68]
    L. Q. Zhang, Y. Shi, T. W. Chen, and B. Huang, " A new method for stabilization of networked control systems with random delays,” IEEE Trans. Autom. Control, vol. 50, no. 8, pp. 1177–1181, Aug. 2005. doi: 10.1109/TAC.2005.852550
    [69]
    A. Ray, " Output feedback control under randomly varying distributed delays,” J. Guid., Control, Dyna., vol. 17, no. 4, pp. 701–711, Jul.-Aug. 1994. doi: 10.2514/3.21258
    [70]
    F. W. Yang, Z. D. Wang, Y. S. Hung, and M. Gani, " H control for networked systems with random communication delays,” IEEE Trans. Autom. Control, vol. 51, no. 3, pp. 511–518, Mar. 2006. doi: 10.1109/TAC.2005.864207
    [71]
    Z. D. Wang, F. W. Yang, D. W. C. Ho, and X. H. Liu, " Robust H control for networked systems with random packet losses,” IEEE Trans. Syst. Man, Cybern. Part B (Cybern.), vol. 37, no. 4, pp. 916–924, Aug. 2007. doi: 10.1109/TSMCB.2007.896412
    [72]
    X. He, Z. Wang, and D. Zhou, " Robust H filtering for networked systems with multiple state delays,” Int. J. Control, vol. 80, no. 8, pp. 121711232, Aug. 1217.
    [73]
    D. Yue, Q.-L. Han, and J. Lam, " Network-based robust H control of systems with uncertainty,” Automatica, vol. 41, no. 6, pp. 999–1007, Jun. 2005. doi: 10.1016/j.automatica.2004.12.011
    [74]
    L. Ding, Q.-L. Han, and G. Guo, " Network-based leader-following consensus for distributed multi-agent systems,” Automatica, vol. 49, no. 7, pp. 2281–2286, Jul. 2013. doi: 10.1016/j.automatica.2013.04.021
    [75]
    J. L. Xiong and J. Lam, " Stabilization of networked control systems with a logic ZOH,” IEEE Trans. Autom. Control, vol. 54, no. 2, pp. 358–363, Feb. 2009. doi: 10.1109/TAC.2008.2008319
    [76]
    J. Lam, H. J. Gao, and C. H. Wang, " Stability analysis for continuous systems with two additive time-varying delay components,” Syst. Control Lett., vol. 56, no. 1, pp. 16–24, Jan. 2007. doi: 10.1016/j.sysconle.2006.07.005
    [77]
    D. Dačić and D. Nešić, " Quadratic stabilization of linear networked control systems via simultaneous protocol and controller design,” Automatica, vol. 43, no. 7, pp. 1145–1155, Jul. 2007. doi: 10.1016/j.automatica.2006.12.027
    [78]
    W. P. M. H. Heemels, A. R. Teel, N. van de Wouw, and D. Nesic, " Networked control systems with communication constraints: tradeoffs between transmission intervals, delays and performance,” IEEE Trans. Autom. Control, vol. 55, no. 8, pp. 1781–1796, Aug. 2010. doi: 10.1109/TAC.2010.2042352
    [79]
    K. Liu, E. Fridman, and L. Hetel, " Networked control systems in the presence of scheduling protocols and communication delays,” SIAM J. Control Optim., vol. 53, no. 4, pp. 1768–1788, Jul. 2015. doi: 10.1137/140980570
    [80]
    C. S. Draper, Inertial Guidance. Oxford: Pergamon Press, 1960.
    [81]
    H. Kopetz, " Should responsive systems be event-triggered or time-triggered?” IEICE Trans. Inform. Syst. Jpn., vol. E76-D, no. 11, pp. 1325–1332, 1993.
    [82]
    K. J. Åström and B. Bernhardsson, " Comparison of periodic and event based sampling for first-order stochastic systems,” IFAC Proc. Vol., vol. 32, no. 2, pp. 5006–5011, Jul. 1999. doi: 10.1016/S1474-6670(17)56852-4
    [83]
    C. Peng and F. Q. Li, " A survey on recent advances in event-triggered communication and control,” Inf. Sci., vol. 457-458, pp. 113–125, Aug. 2018. doi: 10.1016/j.ins.2018.04.055
    [84]
    X.-M. Zhang, Q.-L. Han, and B.-L. Zhang, " An overview and deep investigation on sampled-data-based event-triggered control and filtering for networked systems,” IEEE Trans. Ind. Inform., vol. 13, no. 1, pp. 4–16, Feb. 2017. doi: 10.1109/TII.2016.2607150
    [85]
    L. Ding, Q.-L. Han, X. Ge, and X.-M. Zhang, " An overview of recent advances in event-triggered consensus of multiagent systems,” IEEE Trans. Cybern., vol. 48, no. 4, pp. 1110–1123, Apr. 2018. doi: 10.1109/TCYB.2017.2771560
    [86]
    X.-M. Zhang and Q.-L. Han, " A decentralized event-triggered dissipative control scheme for systems with multiple sensors to sample the system outputs,” IEEE Trans. Cybern., vol. 46, no. 12, pp. 2745–2757, Dec. 2016. doi: 10.1109/TCYB.2015.2487420
    [87]
    X.-M. Zhang and Q.-L. Han, " Event-triggered dynamic output feedback control for networked control systems,” IET Control Theory Appl., vol. 8, no. 4, pp. 226–234, Mar. 2014. doi: 10.1049/iet-cta.2013.0253
    [88]
    B.-L. Zhang, Q.-L. Han, and X.-M. Zhang, " Event-triggered H reliable control for offshore structures in network environments,” J. Sound Vib., vol. 368, pp. 1–21, Apr. 2016. doi: 10.1016/j.jsv.2016.01.008
    [89]
    B.-L. Zhang, Q.-L. Han, and X.-M. Zhang, " Recent advances in vibration control of offshore platforms,” Nonlinear Dyn., vol. 89, no. 2, pp. 755–771, Jul. 2017. doi: 10.1007/s11071-017-3503-4
    [90]
    J. Wang, X.-M. Zhang, and Q.-L. Han, " Event-triggered generalized dissipativity filtering for neural networks with time-varying delays,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 1, pp. 77–88, Jan. 2016. doi: 10.1109/TNNLS.2015.2411734
    [91]
    L. Ding, Q.-L. Han, and X.-M. Zhang, " Distributed secondary control for active power sharing and frequency regulation in islanded microgrids using an event-triggered communication mechanism,” IEEE Trans. Ind. Inform., vol. 15, no. 7, pp. 3910–3922, Jul. 2019. doi: 10.1109/tii.2018.2884494
    [92]
    A. Girard, " Dynamic triggering mechanisms for event-triggered control,” IEEE Trans. Autom. Control, vol. 60, no. 7, pp. 1992–1997, Jul. 2015. doi: 10.1109/TAC.2014.2366855
    [93]
    X. Ge, Q.-L. Han, and Z. Wang, " A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks,” IEEE Trans. Cybern., vol. 49, no. 1, pp. 171–183, Jan. 2019. doi: 10.1109/TCYB.2017.2769722
    [94]
    P. Tallapragada and N. Chopra, " Event-triggered dynamic output feedback control for LTI systems, ” in Proc. 51st IEEE Conf. Decision and Control, Maui, HI, USA, 2012, pp. 6597–6602.
    [95]
    A. Selivanov and E. Fridman, " Event-triggered H control: a switching approach,” IEEE Trans. Autom. Control, vol. 61, no. 10, pp. 3221–3226, Oct. 2016. doi: 10.1109/TAC.2015.2508286
    [96]
    X. F. Wang and M. D. Lemmon, " Self-triggered feedback control systems with finite-gain L2 stability,” IEEE Trans. Autom. Control, vol. 54, no. 3, pp. 452–467, Mar. 2009. doi: 10.1109/TAC.2009.2012973
    [97]
    M. Mazo Jr., A. Anta, and P. Tabuada, " An ISS self-triggered implementation of linear controllers,” Automatica, vol. 46, no. 8, pp. 1310–1314, Aug. 2010. doi: 10.1016/j.automatica.2010.05.009
    [98]
    D. Zhang, Q.-L. Han, and X. Jia, " Network-based output tracking control for T-S fuzzy systems using an event-triggered communication scheme,” Fuzzy Sets Syst., vol. 273, pp. 26–48, Aug. 2015. doi: 10.1016/j.fss.2014.12.015
    [99]
    C. Peng and Q.-L. Han, " On designing a novel self-triggered sampling scheme for networked control systems with data losses and communication delays,” IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 1239–1248, Feb. 2016. doi: 10.1109/TIE.2015.2504044
    [100]
    D. P. Borgers, R. Postoyan, A. Anta, P. Tabuada, D. Nešić, and W. P. M. H. Heemels, " Periodic event-triggered control of nonlinear systems using over approximation techniques,” Automatica, vol. 94, pp. 81–87, Aug. 2018. doi: 10.1016/j.automatica.2018.04.019
    [101]
    X. X. Mi and S. Y. Li, " Event-triggered MPC design for distributed systems with network communications,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 240–250, Jan. 2018. doi: 10.1109/JAS.2016.7510154
    [102]
    M. Ghodrat and H. J. Marquez, " On the local input-output stability of event-triggered control systems,” IEEE Trans. Autom. Control, vol. 64, no. 1, pp. 174–189, Jan. 2019. doi: 10.1109/TAC.2018.2809594
    [103]
    H. Yu, F. Hao, and T. W. Chen, " A uniform analysis on input-to-state stability of decentralized event-triggered control systems, ” IEEE Trans. Autom. Control, to be published. doi: 10.1109/TAC.2018.2879764
    [104]
    F. D. Brunner, W. P. M. H. Heemels, and F. Allgöwer, " Event-triggered and self-triggered control for linear systems based on reachable sets,” Automatica, vol. 101, pp. 15–26, Mar. 2019. doi: 10.1016/j.automatica.2018.11.035
    [105]
    Y. F. Gao, X. M. Sun, C. Y. Wen, and W. Wang, " Event-triggered control for stochastic nonlinear systems,” Automatica, vol. 95, pp. 534–538, Sep. 2018. doi: 10.1016/j.automatica.2018.05.021
    [106]
    W. Chen, D. Ding, X. Ge, Q.-L. Han, and G. Wei, " H containment control of multiagent systems under event-triggered communication scheduling: the finite-horizon case, ” IEEE Trans. Cybern., to be published. doi: 10.1109/TCYB.2018.2885567
    [107]
    J. Wang, X.-M. Zhang, Y. Lin, X. Ge, and Q.-L. Han, " Event-triggered dissipative control for networked stochastic systems under non-uniform sampling,” Inf. Sci., vol. 447, pp. 216–228, Jun. 2018. doi: 10.1016/j.ins.2018.03.003
    [108]
    S. L. Hu, D. Yue, X. P. Xie, and Z. P. Du, " Event-triggered H stabilization for networked stochastic systems with multiplicative noise and network-induced delays,” Inf. Sci., vol. 299, pp. 178–197, Apr. 2015. doi: 10.1016/j.ins.2014.11.048
    [109]
    X.-M. Zhang and Q.-L. Han, " Event-based H filtering for sampled-data systems,” Automatica, vol. 51, pp. 55–69, Jan. 2015. doi: 10.1016/j.automatica.2014.10.092
    [110]
    X. Ge, Q.-L. Han, and Z. Wang, " A threshold-parameter-dependent approach to designing distributed event-triggered H consensus filters over sensor networks,” IEEE Trans. Cybern., vol. 49, no. 4, pp. 1148–1159, Apr. 2019. doi: 10.1109/TCYB.6221036
    [111]
    X. Ge and Q.-L. Han, " Distributed formation control of networked multi-agent systems using a dynamic event-triggered communication mechanism,” IEEE Trans. Ind. Electron., vol. 64, no. 10, pp. 8118–8127, Oct. 2017. doi: 10.1109/TIE.2017.2701778
    [112]
    F. Pasqualetti, F. Dörfler, and F. Bullo, " Attack detection and identification in cyber-physical systems,” IEEE Trans. Autom. Control, vol. 58, no. 11, pp. 2715–2729, Nov. 2013. doi: 10.1109/TAC.2013.2266831
    [113]
    C. De Persis and P. Tesi, " Resilient control under denial-of-service,” IFAC Proc. Vol., vol. 47, no. 3, pp. 134–139, Aug. 2014. doi: 10.3182/20140824-6-ZA-1003.02184
    [114]
    C. Peng, J. C. Li, and M. R. Fei, " Resilient event-triggering H load frequency control for multi-area power systems with energy-limited DoS attacks,” IEEE Trans. Power Syst., vol. 32, no. 5, pp. 4110–4118, Sep. 2017. doi: 10.1109/TPWRS.2016.2634122
    [115]
    H. S. Foroush and S. Martínez, " On triggering control of single-input linear systems under pulse-width modulated DoS signals,” SIAM J. Control Optim., vol. 54, no. 6, pp. 3084–3105, Nov. 2016. doi: 10.1137/16M1069390
    [116]
    Y. Yuan, H. H. Yuan, L. Guo, H. J. Yang, and S. L. Sun, " Resilient control of networked control system under DoS attacks: a unified game approach,” IEEE Trans. Ind. Inform., vol. 12, no. 5, pp. 1786–1794, Oct. 2016. doi: 10.1109/TII.2016.2542208
    [117]
    S. Hu, D. Yue, Q.-L. Han, X. Xie, X. Chen, and C. Dou, " Observer-based event-triggered control for networked linear systems subject to denial-of-service attacks, ” IEEE Trans. Cybern., to be published. doi: 10.1109/TCYB.2019.2903817
    [118]
    H. Foroush and S. Martínez, " On event-triggered control of linear systems under periodic denial-of-service jamming attacks, ” in Proc. 51st IEEE Conf. Decision and Control, Maui, Hawaii, USA, 2012, pp. 2551-2556.
    [119]
    W. Zhang, M. S. Branicky, and S. M. Phillips, " Stability of networked control systems,” IEEE Control Syst. Mag., vol. 21, no. 1, pp. 84–99, Feb. 2001. doi: 10.1109/37.898794
    [120]
    L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. S. Sastry, " Foundations of control and estimation over lossy networks,” Proc. IEEE, vol. 95, no. 1, pp. 163–187, Jan. 2007. doi: 10.1109/JPROC.2006.887306
    [121]
    V. Gupta, N. C. Martins, and J. S. Baras, " Optimal output feedback control using two remote sensors over erasure channels,” IEEE Trans. Autom. Control, vol. 54, no. 7, pp. 1463–1476, Jul. 2009. doi: 10.1109/TAC.2009.2022092
    [122]
    K. Okano and H. Ishii, " Stabilization of uncertain systems with finite data rates and Markovian packet losses,” IEEE Trans. Control Netw. Syst., vol. 1, no. 4, pp. 298–307, Dec. 2014. doi: 10.1109/TCNS.2014.2338572
    [123]
    A. Cetinkaya, H. Ishii, and T. Hayakawa, " Networked control under random and malicious packet losses,” IEEE Trans. Autom. Control, vol. 62, no. 5, pp. 2434–2449, May 2017. doi: 10.1109/TAC.2016.2612818
    [124]
    Y. L. Mo and B. Sinopoli, " Secure estimation in the presence of integrity attacks,” IEEE Trans. Autom. Control, vol. 60, no. 4, pp. 1145–1151, Apr. 2015. doi: 10.1109/TAC.2014.2350231
    [125]
    D. Ding, Z. Wang, Q.-L. Han, and G. Wei, " Security control for discrete-time stochastic nonlinear systems subject to deception attacks,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 48, no. 5, pp. 779–789, May 2018. doi: 10.1109/TSMC.2016.2616544
    [126]
    S. Xiao, Q.-L. Han, X. Ge, and Y. Zhang, " Secure distributed finite-time filtering for positive systems over sensor networks under deception attacks, ” IEEE Trans. Cybern., to be published. doi: 10.1109/TCYB.2019.2900478
    [127]
    Y. L. Mo, E. Garone, A. Casavola, and B. Sinopoli, " False data injection attacks against state estimation in wireless sensor networks, ” in Proc. 49th IEEE Conf. Decision and Control, Atlanta, GA, USA, 2010, pp. 5967–5972.
    [128]
    Y. Guan and X. Ge, " Distributed attack detection and secure estimation of networked cyber-physical systems against false data injection attacks and jamming attacks,” IEEE Trans. Signal Inf. Process. Netw., vol. 4, no. 1, pp. 48–59, Mar. 2018. doi: 10.1109/TSIPN.2017.2749959
    [129]
    M. H. Zhu and S. Martínez, " On the performance analysis of resilient networked control systems under replay attacks,” IEEE Trans. Autom. Control, vol. 59, no. 3, pp. 804–808, Mar. 2014. doi: 10.1109/TAC.2013.2279896
    [130]
    Y. Shoukry and P. Tabuada, " Event-triggered state observers for sparse sensor noise/attacks,” IEEE Trans. Autom. Control, vol. 61, no. 8, pp. 2079–2091, Aug. 2016. doi: 10.1109/TAC.2015.2492159
    [131]
    M. Pajic, J. Weimer, N. Bezzo, O. Sokolsky, G. J. Pappas, and I. Lee, " Design and implementation of attack-resilient cyberphysical systems: with a focus on attack-resilient state estimators,” IEEE Control Syst. Mag., vol. 37, no. 2, pp. 66–81, Apr. 2017. doi: 10.1109/MCS.2016.2643239
    [132]
    L. Ma, Z. Wang, Q.-L. Han, and H.-K. Lam, " Variance-constrained distributed filtering for time-varying systems with multiplicative noises and deception attacks over sensor networks,” IEEE Sens. J., vol. 17, no. 7, pp. 2279–2288, Apr. 2017. doi: 10.1109/JSEN.2017.2654325
    [133]
    Y. Nakahira and Y. L. Mo, " Attack-resilient H2, H, and ?1 state estimator” IEEE Trans. Autom. Control, vol. 63, no. 12, pp. 4353–4360, Dec. 2018. doi: 10.1109/TAC.2018.2819686
    [134]
    X. Ge, Q.-L. Han, X.-M. Zhang, L. Ding, and F. Yang, " Distributed event-triggered estimation over sensor networks: a survey, ” IEEE Trans. Cybern., to be published. doi: 10.1109/TCYB.2019.2917179
    [135]
    A. Teixeira, I. Shames, H. Sandberg, and K. Johansson, " Revealing stealthy attacks in control systems, ” in Proc. 50th Annu. Allerton Conf. Communication, Control, and Computing, Monticello, IL, USA, 2012, pp. 1806–1813.
    [136]
    C. Kwon, W. Y. Liu, and I. Hwang, " Security analysis for cyber-physical systems against stealthy deception attacks, ” in Proc. 2013 Amer. Control Conf., Washington, DC, USA, 2013, pp. 3344–3349.
    [137]
    Y. L. Mo and B. Sinopoli, " On the performance degradation of cyber-physical systems under stealthy integrity attacks,” IEEE Trans. Autom. Control, vol. 61, no. 9, pp. 2618–2624, Sep. 2016. doi: 10.1109/TAC.2015.2498708
    [138]
    V. Do, L. Fillatre, and I. Nikiforov, " A statistical method for detecting cyber/physical attacks on SCADA systems, ” in Proc. 2014 IEEE Conf. Control Applications, Juan Les Antibes, France, pp. 364-369.
    [139]
    Y.-L. Wang, Q.-L. Han, M.-R. Fei, and C. Peng, " Network-based T-S fuzzy dynamic positioning controller design for unmanned marine vehicles,” IEEE Trans. Cybern., vol. 48, no. 9, pp. 2750–2763, Sep. 2018. doi: 10.1109/TCYB.2018.2829730
    [140]
    L. Zou, Z. Wang, Q.-L. Han, and D. Zhou, " Recursive filtering for time-varying systems with random access protocol,” IEEE Trans. Autom. Control, vol. 64, no. 2, pp. 720–727, Feb. 2019.
    [141]
    Z. Zuo, Q.-L. Han, B. Ning, X. Ge, and X.-M., Zhang, " An overview of recent advances in fixed-time cooperative control of multiagent systems,” IEEE Trans. Ind. Inform., vol. 14, no. 6, pp. 2322–2334, Jun. 2018. doi: 10.1109/TII.2018.2817248
    [142]
    B. Ning and Q.-L. Han, " Prescribed finite-time consensus tracking for multiagent systems with nonholonomic chained-form dynamics,” IEEE Trans. Autom. Control, vol. 64, no. 4, pp. 1686–1693, Apr. 2019. doi: 10.1109/TAC.2018.2852605
    [143]
    B. Ning, Q.-L. Han, and Z. Zuo, " Practical fixed-time consensus for integrator-type multi-agent systems: a time base generator approach,” Automatica, vol. 105, pp. 406–414, Jul. 2019. doi: 10.1016/j.automatica.2019.04.013

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (10183) PDF downloads(1200) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return