A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

Early Access

Display Type:         

A New Design Approach for Nearly Linear Phase Stable IIR Filter using Fractional Derivative
N. Agrawal, A. Kumar, Varun Bajaj
, Available online  
Abstract HTML PDF
Abstract:
In this paper, a new design method for digital infinite impulse response (IIR) filters with nearly linear-phase response is presented using fractional derivative constraints (FDCs). In the proposed method, design problem of an IIR filter is constructed as the minimization of phase error between the desired and designed phase response of an allpass filter (APF) such that the designed lowpass filter (LPF) or highpass filter (HPF) yields less passband (ep), and stopband errors (es) with optimal stopband attenuation (As). In order to have accurate passband (pb) response, FDCs are imposed on appropriate reference frequency, where the optimality of these FDCs are ensured by using a new greedy based sorting mechanism. The simulated results reflect the efficiency of the proposed method in term of improved passband response along with better transition width. However, small reduction in As is observed within the allowable limit, when compared to non-fractional design approach, but the designed filter remains immune to wordlength (WL) effect.
Influence of data clouds fusion from 3D real-time vision system on robotic group dead reckoning in unknown terrain
M. Ivanov, O. Sergyienko, V. Tyrsa, L. Lindner, W. Flores-Fuentes, J. C. Rodríguez-Quiñonez, W. Hernandez, P. Mercorelli
, Available online  
Abstract HTML PDF
Abstract:
The article proposes the solution of tasks set required for autonomous robotic group behavior optimization during the mission on a distributed area in a cluttered hazardous terrain. The navigation scheme uses the benefits of the original real-time technical vision system (TVS) based on a dynamic triangulation principle. The method uses TVS output data with fuzzy logic rules processing for resolution stabilization. Based on previous researches, the dynamic communication network model is modified to implement the propagation of information with a feedback method for more stable data exchange inside the robotic group. According to the comparative analysis of approximation methods, in this paper authors are proposing to use two-steps post-processing path planning aiming to get a smooth and energy-saving trajectory. The article provides a wide range of studies and computational experiment results for different scenarios for evaluation of common cloud point influence on robotic motion planning.
Fixed-time Sliding mode Formation Control of AUVs based on a Disturbance Observer
Zhenyu Gao, Jinyuan Liu, Qian Zhang, Ge Guo
, Available online  
Abstract HTML PDF
Abstract:
In this paper, we investigate formation tracking control of autonomous underwater vehicles (AUVs) with model parameter uncertainties and external disturbances. The external disturbances due to the wind, waves, and ocean currents are combined with the model parameter uncertainties as a compound disturbance. Then a disturbance observer (DO) is introduced to estimate the compound disturbance, which can be achieved within a finite time independent of the initial estimation error. Based on a DO, a novel fixed-time sliding control scheme is developed, by which the follower vehicle can track the leader vehicle with all the states globally stabilized within a given settling time. The effectiveness and performance of the method are demonstrated by numerical simulations.
Swing Suppression and Accurate Positioning Control for Underactuated Offshore Crane Systems Suffering From Disturbances
Tong Yang, Ning Sun, He Chen, Yongchun Fang
, Available online  
Abstract HTML PDF
Abstract:
Offshore cranes are widely applied to transfer large-scale cargoes and it is challenging to develop effective control for them with sea wave disturbances. However, most existing controllers can only yield ultimate uniform boundedness or asymptotical stability results for the system's equilibrium point, and the state variables' convergence time cannot be theoretically guaranteed. To address these problems, a nonlinear sliding mode-based controller is suggested to accurately drive the boom/rope to their desired positions. Simultaneously, payload swing can be eliminated rapidly with sea waves. As we know, this paper firstly presents a controller by introducing error-related bounded functions into a sliding surface, which can realize boom/rope positioning within a finite time, and both controller design and analysis based on the nonlinear dynamics are implemented without any linearization manipulations. Moreover, the stability analysis is theoretically ensured with the Lyapunov method. Finally, we employ some experiments to validate the effectiveness of the proposed controller.
Post-Processing Time-Aware Optimal Scheduling of Single Robotic Cluster Tools
Qinghua Zhu, Yan Qiao, Naiqi Wu, Yan Hou
, Available online  
Abstract HTML PDF
Abstract:
Integrated circuit chips are produced on silicon wafers. Robotic cluster tools are widely used since they provide a reconfigurable and efficient environment for most wafer fabrication processes. Recent advances in new semiconductor materials bring about new functionality for integrated circuits. After a wafer is processed in a processing chamber, the wafer should be removed there as fast as possible to guarantee its high-quality integrated circuits. Meanwhile, maximization of the throughput of robotic cluster tools is desired. This work aims to perform post-processing time-aware scheduling for such tools subject to wafer residency time constraints. To do so, closed-form expression algorithms are derived to compute robot waiting time accurately upon the analysis of particular events of robots waiting for single-arm cluster tools. Examples are given to show the application and effectiveness of our proposed algorithms.
Effect of a Traffic Speed based Cruise Control on an Electric Vehicle’s Performance and an Energy Consumption Model of an Electric Vehicle
Anil K. Madhusudhanan, Xiaoxiang Na
, Available online  
Abstract HTML PDF
Abstract:
This paper proposes a cruise control system (CCS) to improve an electric vehicle’s range, which is a significant hurdle in market penetration of electric vehicles. A typical driver or a conventional adaptive cruise control (ACC) controls an electric vehicle (EV) such that it follows a lead vehicle or drives close to the speed limit. This driving behaviour may cause the EV to cruise significantly above the average traffic speed. It may later require the EV to slow down due to the traffic ripples, wasting a part of the EV’s kinetic energy. In addition, the EV will also waste higher speed dependent dissipative energies, which are spent to overcome the aerodynamic drag force and rolling resistance. This paper proposes a CCS to address this issue. The proposed CCS controls an EV’s speed such that it prevents the vehicle from speeding significantly above the average traffic speed. In addition, it maintains a safe inter-vehicular distance from the lead vehicle. The design and simulation analysis of the proposed CCS were in a MATLAB simulation environment. The simulation environment includes an energy consumption model of an EV, which was developed using data collected from an electric bus operation in London. In the simulation analysis, the proposed system reduced the EV’s energy consumption by approximately 36.6% in urban drive cycles and 15.4% in motorway drive cycles. Finally, the experimental analysis using a Nissan e-NV200 on two urban routes showed approximately 30.8% energy savings.
An Improved Cooperative Team Spraying Control of a Diffusion Process With a Moving or Static Pollution Source
Juan Chen, Baotong Cui, YangQuan Chen, Bo Zhuang
, Available online  , doi: 10.1109/JAS.2019.1911519
Abstract HTML PDF
Abstract:
This paper is concerned with a control problem of a diffusion process with the help of static mesh sensor networks in a certain region of interest and a team of networked mobile actuators carrying chemical neutralizers. The major contribution of this paper can be divided into three parts: the first is the construction of a cyber-physical system framework based on centroidal Voronoi tessellations (CVTs), the second is the convergence analysis of the actuators location, and the last is a novel proportional integral (PI) control method for actuator motion planning and neutralizing control (e.g., spraying) of a diffusion process with a moving or static pollution source, which is more effective than a proportional (P) control method. An optimal spraying control cost function is constructed. Then, the minimization problem of the spraying amount is addressed. Moreover, a new CVT algorithm based on the novel PI control method, henceforth called PI-CVT algorithm, is introduced together with the convergence analysis of the actuators location via a PI control law. Finally, a modified simulation platform called diffusion-mobile-actuators-sensors-2-dimension-proportional integral derivative (Diff-MAS2D-PID) is illustrated. In addition, a numerical simulation example for the diffusion process is presented to verify the effectiveness of our proposed controllers.
Stability in probability and inverse optimal control of evolution systems driven by Lévy processes
K. D. Do
, Available online  
Abstract HTML PDF
Abstract:
This paper first develops a Lyapunov-type theorem to study global well-posedness (existence and uniqueness of the strong variational solution) and asymptotic stability in probability of nonlinear stochastic evolution systems (SESs) driven by a special class of Lévy processes, which consist of Wiener and compensated Poisson processes. This theorem is then utilized to develop an approach to solve an inverse optimal stabilization problem for SESs driven by Lévy processes. The inverse optimal control design achieves global well-posedness and global asymptotic stability of the closed-loop system, and minimizes a meaningful cost functional that penalizes both states and control. The approach does not require to solve a Hamilton-Jacobi-Bellman equation. An optimal stabilization of the evolution of the frequency of a certain genetic character from the population is included to illustrate the theoretical developments.
Adaptive Fault-Delay Accommodation for a Class of State-Delay Systems With Actuator Faults
Shengjuan Huang, Chunrong Li
, Available online  
Abstract HTML PDF
Abstract:
Fault and delay accommodating simultaneously for a class of linear systems subject to state delays, actuator faults and disturbances is investigated in this work. A matrix norm minimization technique is applied to minimize the norms of coefficient matrix on time delay terms of the system in consideration. Compared with the matrix inequality scaling technique, the minimization technique can relax substantially the obtained stability conditions for state delay systems, especially, when the coefficient matrices of time delay terms have a large order of magnitudes. An output feedback adaptive fault-delay tolerant controller (AFDTC) is designed subsequently to stabilize the plant with state delays and actuator faults. Compared with the conventional fault tolerant controller (FTC), the designed output feedback AFDTC can be updated on-line to compensate the effect of both faults and delays on systems. Simulation results under two numerical examples exhibit the effectiveness and merits of the proposed method.
Linguistic Single-Valued Neutrosophic Power Aggregation Operators and Their Applications to Group Decision-Making Problems
Harish Garg, Nancy
, Available online  , doi: 10.1109/JAS.2019.1911522
Abstract HTML PDF
Abstract:
Linguistic single-valued neutrosophic set (LSVNS) is a more reliable tool, which is designed to handle the uncertainties of the situations involving the qualitative data. In the present manuscript, we introduce some power aggregation operators (AOs) for the LSVNSs, whose purpose is to diminish the influence of inevitable arguments about the decision-making process. For it, first we develop some averaging power operators, namely, linguistic single-valued neutrosophic (LSVN) power averaging, weighted average, ordered weighted average, and hybrid averaging AOs along with their desirable properties. Further, we extend it to the geometric power AOs for LSVNSs. Based on the proposed work; an approach to solve the group decision-making problems is given along with the numerical example. Finally, a comparative study and the validity tests are present to discuss the reliability of the proposed operators.
An Optimal Control Strategy for Multi-UAVs Target Tracking and Cooperative Competition
Yiguo Yang, Liefa Liao, Hong Yang, Shuai Li
, Available online  
Abstract HTML PDF
Abstract:
An optimal control strategy of winner-take-all (WTA) model is proposed for target tracking and cooperative competition of multi-UAVs. In this model, firstly, based on the artificial potential field method, the artificial potential field function is improved and the fuzzy control decision is designed to realize the trajectory tracking of dynamic targets. Secondly, according to the finite-time convergence high-order differentiator, a double closed-loop UAV speed tracking controller is designed to realize the speed control and tracking of the target tracking trajectory. Numerical simulation results show that the designed speed tracking controller has the advantages of fast tracking, high precision, strong stability and avoiding chattering. Finally, a cooperative competition scheme of multiple UAVs based on WTA is designed to find the minimum control energy from multiple UAVs and realize the optimal control strategy. Theoretical analysis and numerical simulation results show that the model has the fast convergence, high control accuracy, strong stability and good robustness.
Unified Smith Predictor based H Wide-Area Damping Controller to Improve the Control Resiliency to Communication Failure
Mithu Sarkar, Bidyadhar Subudhi, Sandip Ghosh
, Available online  
Abstract HTML PDF
Abstract:
Inter-area low frequency oscillation in power system is one of the major problems for bulk power transmission through weak tie lines. Use of wide-area signal is more effective than the local area signal in damping out the inter-area oscillations. Wide area measurement system (WAMS) is convenient to transmit the wide area signal through the communication channel to the remote location. Communication failure is one of the disastrous phenomena in a communication channel. In this paper, a dual input single output (DISO) H controller is designed to build the control resiliency by employing two highest observability ranking wide are signals with respect to the critical damping inter-area mode. The proposed controller can provide sufficient damping to the system and also the system remains stabilized if one of the wide-area signals is lost. The time delay is an unwanted phenomenon that degrades the performance of the controllers. The Unified Smith Predictor approach is used to design a H controller to handle the time delay. Kundur’s two-area and IEEE-39 bus test systems are considered to verify the effectiveness of the proposed controller. From the simulation results, it is verified that, the proposed controller provides excellent damping performance at normal communication and improves the controller resiliency to counteract the communication failure.
Parallel Reinforcement Learning-Based Energy Efficiency Improvement for a Cyber-Physical System
Teng Liu, Bin Tian, Yunfeng Ai, Yuan Zou, Fei-Yue Wang
, Available online  , doi: 10.1109/JAS.2019.1911633
Abstract HTML PDF
Abstract:
As a complex and critical cyber-physical system (CPS), the hybrid electric powertrain is significant to mitigate air pollution and improve fuel economy. Energy management strategy (EMS) is playing a key role to improve the energy efficiency of this CPS. This paper presents a novel bidirectional long short-term memory (LSTM) network based parallel reinforcement learning (PRL) approach to construct EMS for a hybrid tracked vehicle (HTV). This method contains two levels. The high-level establishes a parallel system first, which includes a real powertrain system and an artificial system. Then, the synthesized data from this parallel system is trained by a bidirectional LSTM network. The lower-level determines the optimal EMS using the trained action state function in the model-free reinforcement learning (RL) framework. PRL is a fully data-driven and learning-enabled approach that does not depend on any prediction and predefined rules. Finally, real vehicle testing is implemented and relevant experiment data is collected and calibrated. Experimental results validate that the proposed EMS can achieve considerable energy efficiency improvement by comparing with the conventional RL approach and deep RL.
Robust Adaptive Attitude Control for Non-rigid Spacecraft With Quantized Control Input
Yun Li, Fan Yang
, Available online  
Abstract HTML PDF
Abstract:
In this paper, an adaptive backstepping control scheme is proposed for attitude tracking of non-rigid spacecraft in the presence of input quantization, inertial uncertainty and external disturbance. The control signal for each actuator is quantized by sector-bounded quantizers, including the logarithmic quantizer and the hysteresis quantizer. By describing the impact of quantization in a new affine model and introducing a smooth function and a novel form of the control signal, the influence caused by input quantization and external disturbance is properly compensated for. Moreover, with the aid of the adaptive control technique, our approach can achieve attitude tracking without the explicit knowledge of inertial parameters. Unlike existing attitude control schemes for spacecraft, in this paper, the quantization parameters can be unknown, and the bounds of inertial parameters and disturbance are also not needed. In addition to proving the stability of the closed-loop system, the relationship between the control performance and design parameters is analyzed. Simulation results are presented to illustrate the effectiveness of the proposed scheme.
Property Preservation of Petri Synthesis Net Based Representation for Embedded Systems
Chuanliang Xia, Chengdong Li
, Available online  
Abstract HTML PDF
Abstract:
Embedded systems have numerous applications in everyday life. Petri-net-based Representation for embedded systems (PRES+) is an important methodology for the modeling and analysis of these embedded systems. For a large complex embedded system, the state space explosion is a difficult problem for PRES+ to model and analyze. The Petri net synthesis method allows one to bypass the state space explosion issue. To solve this problem, as well as model and analyze large complex systems, two synthesis methods for PRES+ are presented in this paper. First, the property preservation of the synthesis shared transition set method is investigated. The property preservation of the synthesis shared transition subnet set method is then studied. An abstraction-synthesis-refinement representation method is proposed. Through this representation method, the synthesis shared transition set approach is used to investigate the property preservation of the synthesis shared transition subnet set operation. Under certain conditions, several important properties of these synthetic nets are preserved, namely reachability, timing, functionality, and liveness. An embedded control system model is used as an example to illustrate the effectiveness of these synthesis methods for PRES+.
The Indirect Shared Steering Control Under Double Loop Structure of Driver and Automation
Yantao Tian, Yanbo Zhao, Yiran Shi, Xuanhao Cao, Ding-Li Yu
, Available online  
Abstract HTML PDF
Abstract:
Due to the critical defects of techniques in fully autonomous vehicles, man-machine cooperative driving is still of great significance in today’s transportation system. Unlike the previous shared control structure, this paper introduces a double loop structure which is applied to indirect shared steering control between driver and automation. In contrast to the tandem indirect shared control, the parallel indirect shared control put the authority allocation system of steering angle into the framework to allocate the corresponding weighting coefficients reasonably and output the final desired steering angle according to the current deviation of vehicle and the accuracy of steering angles. Besides, the active disturbance rejection controller (ADRC) is also added in the frame in order to track the desired steering angle fleetly and accurately as well as restrain the internal and external disturbances effectively which including the steering friction torque, wind speed and ground interference etc. Eventually, we validated the advantages of double loop framework through three sets of double lane change and slalom experiments, respectively. Exactly as we expected, the simulation results show that the double loop structure can effectively reduce the lateral displacement error caused by the driver or the controller, significantly improve the tracking precision and keep great performance in trajectory tracking characteristics when driving errors occur in one of driver and controller.
Data-Driven Based Fault Prognosis for Industrial Systems: A Concise Overview
Kai Zhong, Min Han, Bing Han
, Available online  , doi: 10.1109/JAS.2019.1911804
Abstract HTML PDF
Abstract:
Fault prognosis is mainly referred to the estimation of the operating time before a failure occurs, which is vital for ensuring the stability, safety and long lifetime of degrading industrial systems. According to the results of fault prognosis, the maintenance strategy for underlying industrial systems can realize the conversion from passive maintenance to active maintenance. With the increased complexity and the improved automation level of industrial systems, fault prognosis techniques have become more and more indispensable. Particularly, the data-driven based prognosis approaches, which tend to find the hidden fault factors and determine the specific fault occurrence time of the system by analysing historical or real-time measurement data, gain great attention from different industrial sectors. In this context, the major task of this paper is to present a systematic overview of data-driven fault prognosis for industrial systems. Firstly, the characteristics of different prognosis methods are revealed with the data-based ones being highlighted. Moreover, based on the different data characteristics that exist in industrial systems, the corresponding fault prognosis methodologies are illustrated, with emphasis on analyses and comparisons of different prognosis methods. Finally, we reveal the current research trends and look forward to the future challenges in this field. This review is expected to serve as a tutorial and source of references for fault prognosis researchers.
Robust Deadlock Avoidance Policy for Automated Manufacturing System with Multiple Unreliable Resources
JianChao Luo, ZhiQiang Liu, ShuoGang Wang, KeYi Xing
, Available online  
Abstract HTML PDF
Abstract:
This work studies the robust deadlock control of automated manufacturing systems with multiple unreliable resources. Our goal is to ensure the continuous production of the jobs that only require reliable resources. To reach this goal, we propose a new modified Banker's algorithm (MBA) to ensure that all resources required by these jobs can be freed. Moreover, a Petri net based deadlock avoidance policy (DAP) is introduced to ensure that all jobs remaining in the system after executing the new MBA can complete their processing smoothly when their required unreliable resources are operational. The new MBA together with the DAP forms a new DAP that is robust to the failures of unreliable resources. Owing to the high permissiveness of the new MBA and the optimality of the DAP, it is tested to be more permissive than state-of-the-art control policies.
Arbitrary-Order Fractance Approximation Circuits with High Order-Stability Characteristic and Wider Approximation Frequency Bandwidth
Qiu-Yan He, Yi-Fei Pu, Bo Yu, Xiao Yuan
, Available online  
Abstract HTML PDF
Abstract:
This paper discusses a novel rational approximation algorithm of arbitrary-order fractances, which has high order-stability characteristic and wider approximation frequency bandwidth. The fractor has been exploited extensively in various scientific domains. The well-known shortcoming of the existing fractance approximation circuits, such as the oscillation phenomena, is still in great need of special research attention. Motivated by this need, a novel algorithm with high order-stability characteristic and wider approximation frequency bandwidth is introduced. In order to better understand the iterating process, the approximation principle of this algorithm is investigated at first. Next, features of the iterating function and frequency-domain characteristics of the impedance function calculated by this algorithm are researched, respectively. Furthermore, approximation performance comparisons have been made between the corresponding circuit and other types of fractance approximation circuits. Finally, a fractance approximation circuit with the impedance function of negative 2/3-order is designed. The high order-stability characteristic and wider approximation frequency bandwidth are fundamental important advantages, which make our proposed algorithm competitive in practical applications.
A Local Deviation Constraint Based Non-Rigid Structure From Motion Approach
Xia Chen, Zhan-Li Sun, Kin-Man Lam, Zhigang Zeng
, Available online  
Abstract HTML PDF
Abstract:
In many traditional non-rigid structure from motion (NRSFM) approaches, the estimation results of part feature points may significantly deviate from their true values because only the overall estimation error is considered in their models. Aimed at solving this issue, a local deviation-constrained-based column-space-fitting approach is proposed in this paper to alleviate estimation deviation. In our work, an effective model is first constructed with two terms: the overall estimation error, which is computed by a linear subspace representation, and a constraint term, which is based on the variance of the reconstruction error for each frame. Furthermore, an augmented lagrange multipliers (ALM) iterative algorithm is presented to optimize the proposed model. Moreover, a convergence analysis is performed with three steps for the optimization process. As both the overall estimation error and the local deviation are utilized, the proposed method can achieve a good estimation performance and a relatively uniform estimation error distribution for different feature points. Experimental results on several widely used synthetic sequences and real sequences demonstrate the effectiveness and feasibility of the proposed algorithm.
Non-Monotonic Lyapunov-Krasovskii Functional Approach to Stability Analysis and Stabilization of Discrete Time-Delay Systems
Younes Solgi, Alireza Fatehi, Ala Shariati
, Available online  
Abstract HTML PDF
Abstract:
In this paper, a novel non-monotonic Lyapunov-Krasovskii functional approach is proposed to deal with the stability analysis and stabilization problem of linear discrete time-delay systems. This technique is utilized to relax the monotonic requirement of the Lyapunov-Krasovskii theorem. In this regard, the Lyapunov-Krasovskii functional is allowed to increase in a few steps, while being forced to be overall decreasing. As a result, it relays on a larger class of Lyapunov-Krasovskii functionals to provide stability of a state-delay system. To this end, using the non-monotonic Lyapunov-Krasovskii theorem, new sufficient conditio-ns are derived regarding linear matrix inequalities (LMIs) to study the global asymptotic stability of state-delay systems. Moreover, new stabilization conditions are also proposed for time-delay systems in this article. Both simulation and experimental results on a pH neutralizing process are provided to demonstrate the efficacy of the proposed method.
Learning a Deep Predictive Coding Network for a Semi-supervised 3D-Hand Pose Estimation
Jamal Banzi, Isack Bulugu, Shiliang Huang, Zhongfu Ye
, Available online  
Abstract HTML PDF
Abstract:
In this paper we present a CNN based approach for a real time 3D-hand pose estimation from the depth sequence. Prior discriminative approaches have achieved remarkable success but are facing two main challenges: Firstly, the methods are fully supervised hence require large numbers of annotated training data to extract the dynamic information from a hand representation. Secondly, unreliable hand detectors based on strong assumptions or a weak detector which often fail in several situations like complex environment and multiple hands. In contrast to these methods, our method can be considered as semi-supervised as we perform predictive coding of image sequences of hand poses in order to capture latent features underlying a given image without supervision. We then model the hand using a novel latent tree dependency model (LDTM) which transforms internal joint location to an explicit representation. We further combine the modeled hand topology with the pose estimator using data dependent method to jointly learn latent variable of the posterior pose appearance and the pose configuration respectively. Finally, an unsupervised error term which is a part of the recurrent architecture ensures smooth estimations of the final pose. Our experiment on three challenging public datasets, ICVL, MSRA, and NYU demonstrate the significant performance of our method which is comparable or better than state-of-the-art approaches.
Distributed MPC for Reconfigurable Architecture Systems via Alternating Direction Method of Multipliers
Ting Bai, Shaoyuan Li, Yuanyuan Zou
, Available online  
Abstract HTML PDF
Abstract:
This paper investigates the distributed model predictive control (MPC) problem of linear systems whose network topologies are changeable by the way of inserting new subsystems, disconnecting existing subsystems, or merely modifying the couplings between different subsystems. To equip live systems with the quick response ability when modifying network topology, while keeping a satisfactory dynamic performance, a novel reconfiguration control scheme based on the alternating direction method of multipliers (ADMM) is presented. In this scheme, the local controllers directly influenced by the structure realignment are redesigned in the reconfiguration control. Meanwhile, by employing the powerful ADMM algorithm, the iterative formulas for solving the reconfigured optimization problem are obtained, which significantly accelerate the computation speed and ensure a timely output of the reconfigured optimal control response. Ultimately, the presented reconfiguration scheme is applied to the level control of a benchmark four-tank plant to illustrate its effectiveness and main characteristics.
Adaptive Control of Discrete-time Nonlinear Systems Using ITF-ORVFL
Xiaofei Zhang, Hongbin Ma, Wenchao Zuo, Man Luo
, Available online  , doi: 10.1109/JAS.2019.1911801
Abstract HTML PDF
Abstract:
Random vector functional link networks (RVFL) is a class of single hidden layer neural networks based on a learner paradigm by which some parameters are randomly selected and contains more information due to the direct links between inputs and outputs. In this paper, combining the advantages of RVFL and the ideas of online sequential extreme learning machine (OS-ELM) and initial-training-free online extreme learning machine (ITF-OELM), a novel online learning algorithm which is named as initial-training-free online random vector functional link (ITF-ORVFL) is investigated for training RVFL. Because the idea of ITF-ORVFL comes from OS-ELM and ITF-OELM, the link vector of RVFL can be analytically determined based on sequentially arriving data by ITF-ORVFL with a high learning speed. Besides a novel variable is added to the update formulae of ITF-ORVFL, and the stability for nonlinear systems based on this learning algorithm is guaranteed. The experiment results indicate that the proposed ITF-ORVFL is effective in estimating nonparametric uncertainty.
Adaptive Output Regulation Of A Class Of Nonlinear Output Feedback Systems With Unknown High Frequency Gain
Yuan Jiang, Jiyang Dai
, Available online  
Abstract HTML PDF
Abstract:
This paper presents an output feedback design approach based on the adaptive control scheme developed for nonlinearly parameterized systems, to achieve global output regulation for a class of nonlinear systems in output feedback form. We solve the output regulation problem without the knowledge of the sign and the value of the high frequency gain a priori. It is not necessary to have both the limiting assumptions that the exogenous signal ω and the unknown parameter μ belong to a prior known compact set and the high frequency gain has a determinate lower and upper bounds. The effectiveness of the proposed algorithm is shown with the help of an example.
ADMM-based Distributed Algorithm for Economic Dispatch in Power Systems with Both Packet Drops and Communication Delays
Qing Yang, Gang Chen, Ting Wang
, Available online  
Abstract HTML PDF
Abstract:
By virtue of alternating direction method of multipliers (ADMM), Newton-Raphson method, ratio consensus approach and running sum method, two distributed iterative strategies are presented in this paper to address the economic dispatch problem (EDP) in power systems. Different from most of the existing distributed ED approaches which neglect the effects of packet drops or/and time delays, this paper takes into account both packet drops and time delays which frequently occur in communication networks. Moreover, directed and possibly unbalanced graphs are considered in our algorithms, over which many distributed approaches fail to converge. Furthermore, the proposed schemes can address the EDP with local constraints of generators and nonquadratic convex cost functions, not just quadratic ones required in some existing ED approaches. Both theoretical analyses and simulation studies are provided to demonstrate the effectiveness of the proposed schemes.
Two-Order Approximate and Large Stepsize Numerical Direction Based on the Quadratic Hypothesis and Fitting Method
Xiao-Li Yin, Chun-Ming Li, Yuan Zhang
, Available online  , doi: 10.1109/JAS.2019.1911735
Abstract HTML PDF
Abstract:
Many effective optimization algorithms require partial derivatives of objective functions, while some optimization problems' objective functions have no derivatives. According to former research studies, search direction is obtained using the quadratic hypothesis of objective functions. Based on derivatives, quadratic function assumptions, and directional derivatives, the computational commonalities of numerical first-order partial derivatives, second-order partial derivatives, and numerical second-order mixed partial derivatives were constructed. Based on the coordinate transformation relation, a set of orthogonal vectors in the fixed coordinate system was established according to the optimization direction. A numerical algorithm was proposed, taking the second order approximation direction as an example. A large stepsize numerical algorithm based on coordinate transformation was proposed. Several algorithms were validated by an unconstrained optimization of the two-dimensional Rosenbrock objective function. The numerical second order approximation direction with the numerical mixed partial derivatives showed good results. The calculated amount accounts for 0.2843% of the calculated value of the second-order mixed partial derivative. In the process of rotating the local coordinate system 360°, because the objective function is more complex than the quadratic function, if the numerical direction derivative is used instead of the analytic partial derivative, the optimization direction varies with a range of 103.05°. Because theoretical error is in the numerical negative gradient direction, the calculation with the coordinate transformation is 94.71% less than the calculation without coordinate transformation. If there is no theoretical error in the numerical negative gradient direction or in the large-stepsize numerical optimization algorithm based on the coordinate transformation, the sawtooth phenomenon occurs. When each numerical mixed partial derivative takes more than one point, the optimization results cannot be improved. The numerical direction based on the quadratic hypothesis only requires the objective function to be obtained, but does not require derivability and does not take into account truncation error and rounding error. Thus, the application scopes of many optimization methods are extended.
Tracking Control of Uncertain Nonlinear Systems With Unknown Constant Input Delay
Ashish Kumar Jain, Shubhendu Bhasin
, Available online  , doi: 10.1109/JAS.2019.1911807
Abstract HTML PDF
Abstract:
A robust delay compensator has been developed for a class of uncertain nonlinear systems with an unknown constant input delay. The control law consists of feedback terms based on the integral of past control values and a novel filtered tracking error, capable of compensating for input delays. Suitable Lyapunov-Krasovskii functionals are used to prove global uniformly ultimately bounded (GUUB) tracking, provided certain sufficient gain conditions, dependent on the bound of the delay, are satisfied. Simulation results illustrate the performance and robustness of the controller for different values of input delay.
Circular Formation Flight Control for Unmanned Aerial Vehicles with Directed Network and External Disturbance
Yangyang Chen, Rui Yu, Ya Zhang, Chenglin Liu
, Available online  , doi: 10.1109/JAS.2019.1911669
Abstract HTML PDF
Abstract:
This article proposes a new distributed formation flight protocol for unmanned aerial vehicles (UAVs) to perform coordinated circular tracking around a set of circles on a target sphere. Different from the previous results limited in bidirectional networks and disturbance-free motions, this paper handles the circular formation flight control problem with both directed network and spatiotemporal disturbance with the knowledge of its upper bound. Distinguishing from the design of a common Lyaponov function for bidirectional cases, we separately design the control for the circular tracking subsystem and the formation keeping subsystem with the circular tracking error as input. Then the whole control system is regarded as a cascade connection of these two subsystems, which is proved to be stable by input-to-state stability (ISS) theory. For the purpose of encountering the external disturbance, the backstepping technology is introduced to design the control inputs of each UAV pointing to North and Down along the special sphere (say, the circular tracking control algorithm) with the help of the switching function. Meanwhile, the distributed linear consensus protocol integrated with anther switching anti-interference item is developed to construct the control input of each UAV pointing to east along the special sphere (say, the formation keeping control law) for formation keeping. The validity of the proposed control law is proved both in the rigorous theory and through numerical simulations.
Four Wheel Independent Drive Electric Vehicle Lateral Stability Control Strategy
Yantao Tian, Xuanhao Cao, Xiaoyu Wang, Yanbo Zhao
, Available online  , doi: 10.1109/JAS.2019.1911729
Abstract HTML PDF
Abstract:
In this paper, a kind of lateral stability control strategy is put forward about the four wheel independent drive electric vehicle. The design of control system adopts hierarchical structure. Unlike the previous control strategy, this paper introduces a method which is the combination of sliding mode control and optimal allocation algorithm. According to the driver's operation commands (steering angle and speed), the steady state responses of the sideslip angle and yaw rate are obtained. Based on this, the reference model is built. Upper controller adopts the sliding mode control principle to obtain the desired yawing moment demand. Lower controller is designed to satisfy the desired yawing moment demand by optimal allocation of the tire longitudinal forces. Firstly, the optimization goal is built to minimize the actuator cost. Secondly, the weighted least-square method is used to design the tire longitudinal forces optimization distribution strategy under the constraint conditions of actuator and the friction oval. Beyond that, when the optimal allocation algorithm is not applied, a method of axial load ratio distribution is adopted. Finally, CarSim associated with Simulink simulation experiments are designed under the conditions of different velocities and different pavements. The simulation results show that the control strategy designed in this paper has a good following effect comparing with the reference model and the sideslip angle \begin{document}$ \beta $\end{document} is controlled within a small rang at the same time. Beyond that, based on the optimal distribution mode, the electromagnetic torque phase of each wheel can follow the trend of the vertical force of the tire, which shows the effectiveness of the optimal distribution algorithm.
A Novel MDFA-MKECA Method with Application to Industrial Batch Process Monitoring
Yinghua Yang, Xiang Shi, Xiaozhi Liu, Hongru Li
, Available online  , doi: 10.1109/JAS.2019.1911555
Abstract HTML PDF
Abstract:
For the complex batch process with characteristics of unequal batch data length, a novel data-driven batch process monitoring method is proposed based on mixed data features analysis and multi-way kernel entropy component analysis (MDFA-MKECA) in this paper. Combining the mechanistic knowledge, different mixed data features of each batch including statistical and thermodynamics entropy features, are extracted to finish data pre-processing. After that, MKECA is applied to reduce data dimensionality and finally establish a monitoring model. The proposed method is applied to a reheating furnace industry process, and the experimental results demonstrate that the MDFA-MKECA method can reduce the calculated amount and effectively provide on-line monitoring of the batch process.
Three-Dimensional Scene Encryption Algorithm Based on Phase Iteration Algorithm of the Angular-Spectral Domain
Chao Han, Yuzhen Shen
, Available online  , doi: 10.1109/JAS.2019.1911726
Abstract HTML PDF
Abstract:
In order to increase the capacity of encrypted information and reduce the loss of information transmission, a three-dimensional scene encryption algorithm based on the phase iteration of the angular spectrum domain is proposed in this paper. The algorithm, which adopts the layer-oriented method, generates the computer generated hologram by encoding the three-dimensional scene. Then the computer generated hologram is encoded into three pure phase functions by adopting the phase iterative algorithm based on angular spectrum domain, and the encryption process is completed. The three-dimensional scene encryption can improve the capacity of the information, and the three-phase iterative algorithm can guarantee the security of the encryption information. The numerical simulation results show that the algorithm proposed in this paper realized the encryption and decryption of three-dimensional scene. At the same time, it can ensure the safety of the encrypted information and increase the capacity of the encrypted information.
Distribution of Miss Distance for Pursuit-Evasion Problem
Shengwen Xiang, Hongqi Fan, Qiang Fu
, Available online  , doi: 10.1109/JAS.2019.1911552
Abstract HTML PDF
Abstract:
Miss distance is a critical parameter of assessing the performance for highly maneuvering targets interception (HMTI). In a realistic terminal guidance system, the control of pursuer \begin{document}$ u $\end{document} depends on the estimate of unknown state, thus the miss distance becomes a random variable with a prior unknown distribution. Currently, such a distribution is mainly evaluated by the method of Monte Carlo simulation. In this paper, by integrating the estimation error model of zero-effort miss distance (ZEM) obtained by our previous work, an analytic method for solving the distribution of miss distance is proposed, in which the system is presumed to use a bang-bang control strategy. By comparing with the results of Monte Carlo simulations under four different types of disturbances (maneuvers), the correctness of the proposed method is validated. Results of this paper provide a powerful tool for the design, analysis and performance evaluation of guidance system.
Static Force-Based Modeling and Parameter Estimation for a Deformable Link Composed of Passive Spherical Joints with Preload Forces
Gaofeng Li, Dezhen Song, Lei Sun, Shan Xu, Hongpeng Wang, Jingtai Liu
, Available online  , doi: 10.1109/JAS.2019.1911549
Abstract HTML PDF
Abstract:
To balance the contradiction between higher flexibility and heavier load bearing capacity, we present a novel deformable manipulator which is composed of active rigid joints and deformable links. The deformable link is composed of passive spherical joints with preload forces between socket-ball surfaces. To estimate the load bearing capacity of a deformable link, we present a static force-based model of spherical joint with preload force and analyze the static force propagation in the deformable link. This yields an important result that the load bearing capacity of a spherical joint only depends on its radius, preload force, and static friction coefficient. We further develop a parameter estimation method to estimate the product of preload force and static friction coefficient. The experimental results validate our model. 80.4% of percentage errors on the maximum payload mass prediction are below 15%.
Path Planning for Intelligent Robots Based on Deep Q-learning With Experience Replay and Heuristic Knowledge
Lan Jiang, Hongyun Huang, Zuohua Ding
, Available online  , doi: 10.1109/JAS.2019.1911732
Abstract HTML PDF
Abstract:
Path planning and obstacle avoidance are two challenging problems in the study of intelligent robots. In this paper, we develop a new method to alleviate these problems based on deep Q-learning with experience replay and heuristic knowledge. In this method, a neural network has been used to resolve the " curse of dimensionality” issue of the Q-table in reinforcement learning. When a robot is walking in an unknown environment, it collects experience data which is used for training a neural network; such a process is called experience replay. Heuristic knowledge helps the robot avoid blind exploration and provides more effective data for training the neural network. The simulation results show that in comparison with the existing methods, our method can converge to an optimal action strategy with less time and can explore a path in an unknown environment with fewer steps and larger average reward.
Sliding Mode Control for Nonlinear Markovian Jump Systems under Denial-of-Service Attacks
Lei Liu, Lifeng Ma, Yiwen Wang, Jie Zhang, Yuming Bo
, Available online  , doi: 10.1109/JAS.2019.1911531
Abstract HTML PDF
Abstract:
This paper investigates the sliding mode control problem for a class of discrete-time nonlinear networked Markovian jump systems in the presence of probabilistic Denial-of-Service attacks. The communication network via which the data is propagated is unsafe and the malicious adversary can attack the system during state feedback. By considering random Denial-of-Service attacks, a new sliding mode variable is designed, which takes into account the distribution information of the probabilistic attacks. Then, by resorting to Lyapunov theory and stochastic analysis methods, sufficient conditions are established for the existence of the desired sliding mode controller, guaranteeing both reachability of the designed sliding surface and stability of the resulting sliding motion. Finally, a simulation example is given to demonstrate the effectiveness of the proposed sliding mode control algorithm.
Recovery of Collided RFID Tags With Frequency Drift on Physical Layer
Junzhi Li, Haifeng Wu, Yu Zeng
, Available online  , doi: 10.1109/JAS.2019.1911720
Abstract HTML PDF
Abstract:
In a passive ultra-high frequency (UHF) radio frequency identification (RFID) system, the recovery of collided tag signals on a physical layer can enhance identification efficiency. However, frequency drift is very common in UHF RFID systems, and will have an influence on the recovery on the physical layer. To address the problem of recovery with the frequency drift, this paper adopts a radial basis function (RBF) network to separate the collision signals, and decode the signals via FM0 to recovery collided RFID tags. Numerical results show that the method in this paper has better performance of symbol error rate (SER) and separation efficiency compared to conventional methods when frequency drift occurs.
Iterative Learning Control for Distributed Parameter Systems Based on Non-Collocated Sensors and Actuators
Jianxiang Zhang, Baotong Cui, Xisheng Dai, Zhengxian Jiang
, Available online  , doi: 10.1109/JAS.2019.1911663
Abstract HTML PDF
Abstract:
In this paper, an open-loop PD-type iterative learning control (ILC) scheme is first proposed for two kinds of distributed parameter systems (DPSs) which are described by parabolic partial differential equations using non-collocated sensors and actuators. Then, a closed-loop PD-type ILC algorithm is extended to a class of distributed parameter systems with a non-collocated single sensor and \begin{document}$ m $\end{document} actuators when the initial states of the system exist some errors. Under some given assumptions, the convergence conditions of output errors for the systems can be obtained in the sense of the \begin{document}$ \lambda $\end{document}-norm. Finally, one numerical example for a distributed parameter system with a single sensor and two actuators is presented to illustrate the effectiveness of the proposed ILC schemes.
3D Shape Reconstruction of Lumbar Vertebra From Two X-ray Images and a CT Model
Longwei Fang, Zuowei Wang, Zhiqiang Chen, Fengzeng Jian, Shuo Li, Huiguang He
, Available online  , doi: 10.1109/JAS.2019.1911528
Abstract HTML PDF
Abstract:
Structure reconstruction of 3D anatomy from bi-planar X-ray images is a challenging topic. Traditionally, the elastic-model-based method was used to reconstruct 3D shapes by deforming the control points on the elastic mesh. However, the reconstructed shape is not smooth because the limited control points are only distributed on the edge of the elastic mesh. Alternatively, statistical-model-based methods, which include shape-model-based and intensity-model-based methods, are introduced due to their smooth reconstruction. However, both suffer from limitations. With the shape-model-based method, only the boundary profile is considered, leading to the loss of valid intensity information. For the intensity-based-method, the computation speed is slow because it needs to calculate the intensity distribution in each iteration. To address these issues, we propose a new reconstruction method using X-ray images and a specimen’s CT data. Specifically, the CT data provides both the shape mesh and the intensity model of the vertebra. Intensity model is used to generate the deformation field from X-ray images, while the shape model is used to generate the patient specific model by applying the calculated deformation field. Experiments on the public synthetic dataset and clinical dataset show that the average reconstruction errors are 1.1 mm and 1.2 mm, separately. The average reconstruction time is 3 minutes.
Convergence Analysis of a Self-Stabilizing Algorithm for Minor Component Analysis
Gang Liu, Haidi Dong, Yingbin Gao
, Available online  , doi: 10.1109/JAS.2019.1911636
Abstract HTML PDF
Abstract:
The Möller algorithm is a self-stabilizing minor component analysis algorithm. This research document involves the study of the convergence and dynamic characteristics of the Möller algorithm using the deterministic discrete time (DDT) methodology. Unlike other analysis methodologies, the DDT methodology is capable of serving the distinct time characteristic and having no constraint conditions. Through analyzing the dynamic characteristics of the weight vector, several convergence conditions are drawn, which are beneficial for its application. The performing computer simulations and real applications demonstrate the correctness of the analysis’s conclusions.
Vision Based Hand Gesture Recognition Using 3D Shape Context
Chen Zhu, Jianyu Yang, Zhanpeng Shao, Chunping Liu
, Available online  , doi: 10.1109/JAS.2019.1911534
Abstract HTML PDF
Abstract:
Hand gesture recognition is a popular topic in computer vision and makes human-computer interaction more flexible and convenient. The representation of hand gestures is critical for recognition. In this paper, we propose a new method to measure the similarity between hand gestures and exploit it for hand gesture recognition. The depth maps of hand gestures captured via the Kinect sensors are used in our method, where the 3D hand shapes can be segmented from the cluttered backgrounds. To extract the pattern of salient 3D shape features, we propose a new descriptor–3D Shape Context, for 3D hand gesture representation. The 3D Shape Context information of each 3D point is obtained in multiple scales because both local shape context and global shape distribution are necessary for recognition. The description of all the 3D points constructs the hand gesture representation, and hand gesture recognition is explored via dynamic time warping algorithm. Extensive experiments are conducted on multiple benchmark datasets. The experimental results verify that the proposed method is robust to noise, articulated variations, and rigid transformations. Our method outperforms state-of-the-art methods in the comparisons of accuracy and efficiency.
A Behavioral Authentication Method for Mobile based on Browsing Behaviors
Dongxiang Chen, Zhijun Ding, Chungang Yan, Mimi Wang
, Available online  , doi: 10.1109/JAS.2019.1911648
Abstract HTML PDF
Abstract:
The passwords for unlocking the mobile devices are relatively simple, easier to be stolen, which causes serious potential security problems. An important research direction of identity authentication is to establish user behavior models to authenticate users. In this paper, a mobile terminal APP browsing behavioral authentication system architecture which synthesizes multiple factors is designed. This architecture is suitable for users using the mobile terminal APP in the daily life. The architecture includes data acquisition, data processing, feature extraction, and sub model training. We can use this architecture for continuous authentication when the user uses APP at the mobile terminal.
Stabilization Parametric Region of Distributed PID Controllers for General First-Order Multi-Agent Systems With Time Delay
Xinyi Yu, Peixuan Ding, Fan Yang, Chao Zou, Linlin Ou
, Available online  , doi: 10.1109/JAS.2019.1911627
Abstract HTML PDF
Abstract:
The stabilization problem of distributed proportional-integral-derivative (PID) controllers for general first-order multi-agent systems with time delay is investigated in the paper. The closed-loop multi-input multi-output (MIMO) framework in frequency domain is firstly introduced for the multi-agent system. Based on the matrix theory, the whole system is decoupled into several subsystems with respect to the eigenvalues of the Laplacian matrix. Considering that the eigenvalues may be complex numbers, the consensus problem of the multi-agent system is transformed into the stabilizing problem of all the subsystems with complex coefficients. For each subsystem with complex coefficients, the range of admissible proportional gains \begin{document}$ {k_{\rm{P}}} $\end{document} is analytically determined. Then, the stabilizing region in the space of integral gain (\begin{document}$ {k_{\rm{I}}} $\end{document}) and derivative gain (\begin{document}$ {k_{\rm{D}}} $\end{document}) for a given \begin{document}$ {k_{\rm{P}}} $\end{document} value is also obtained in an analytical form. The entire stabilizing set can be determined by sweeping \begin{document}$ {k_{\rm{P}}} $\end{document} in the allowable range. The proposed method is conducted for general first-order multi-agent systems under arbitrary topology including undirected and directed graph topology. Besides, the results in the paper provide the basis for the design of distributed PID controllers satisfying different performance criteria. The simulation examples are presented to check the validity of the proposed control strategy
Stability of Delayed Switched Systems with State-Dependent Switching
Chao Liu, Zheng Yang, Xiaoyang Liu, Xianying Huang
, Available online  , doi: 10.1109/JAS.2019.1911624
Abstract HTML PDF
Abstract:
This paper investigates the stability of switched systems with time-varying delay and all unstable subsystems. According to the stable convex combination, we design a state-dependent switching rule. By employing wirtinger integral inequality and Leibniz-Newton formula, the stability results of nonlinear delayed switched systems whose nonlinear terms satisfy Lipschitz condition under the designed state-dependent switching rule are established for different assumptions on time delay. Moreover, some new stability results for linear delayed switched systems are also presented. The effectiveness of the proposed results is validated by two typical numerical examples.
Variational Inference Based Kernel Dynamic Bayesian Networks for Construction of Prediction Intervals for Industrial Time Series with Incomplete Input
Long Chen, Linqing Wang, Zhongyang Han, Jun Zhao, Wei Wang
, Available online  , doi: 10.1109/JAS.2019.1911645
Abstract HTML PDF
Abstract:
Prediction intervals (PIs) for industrial time series can provide useful guidance for workers. Given that the failure of industrial sensors may cause the missing point in inputs, the existing kernel dynamic Bayesian networks (KDBN), serving as an effective method for PIs construction, suffer from high computational load using the stochastic algorithm for inference. This study proposes a variational inference method for the KDBN for the purpose of fast inference, which avoids the time-consuming stochastic sampling. The proposed algorithm contains two stages. The first stage involves the inference of the missing inputs by using a local linearization based variational inference, and based on the computed posterior distributions over the missing inputs the second stage sees a Gaussian approximation for probability over the nodes in future time slices. To verify the effectiveness of the proposed method, a synthetic dataset and a practical dataset of generation flow of blast furnace gas (BFG) are employed with different ratios of missing inputs. The experimental results indicate that the proposed method can provide reliable PIs for the generation flow of BFG and it exhibits shorter computing time than the stochastic based one.
Flue Gas Monitoring System With Empirically-Trained Dictionary
Hui Cao, Yajie Yu, Panpan Zhang, Yanxia Wang
, Available online  , doi: 10.1109/JAS.2019.1911642
Abstract HTML PDF
Abstract:
The monitoring of flue gas of the thermal power plants is of great significance in energy conservation and environmental protection. Spectral technique has been widely used in the gas monitoring system for predicting the concentrations of specific gas components. This paper proposes flue gas monitoring system with empirically-trained dictionary (ETD) to deal with the complexity and biases brought by the uninformative spectral data. Firstly, ETD is extracted from the raw spectral data by an alternative optimization between the sparse coding stage and the dictionary update stage to minimize the error of sparse representation. D1, D2 and D3 are three types of ETD obtained by different methods. Then, the predictive model of component concentration is constructed on the ETD. In the experiments, two real flue gas spectral datasets are collected and the proposed method combined with the partial least squares, the background propagation neural network and the support vector machines are performed. Moreover, the optimal parameters are chosen according to the 10-fold rootmean-square error of cross validation. The experimental results demonstrate that the proposed method can be used for quantitative analysis effectively and ETD can be applied to the gas monitoring systems. Note to Practitioners—The monitoring of the flue gas of the thermal power plants is very important and spectral technique has been widely used in the gas monitoring system for predicting the concentrations of specific gas components. However, the redundant and unrelated information of spectra lower the precision of the predictive model. This paper proposes flue gas monitoring system with ETD to deal with the complexity and biases brought by the uninformative spectral data. The predictive model of component concentration is constructed on the ETD instead of the original spectral space. The proposed method can be used for quantitative analysis effectively and ETD can be applied to the gas monitoring systems.
Reduced-Order GPIO Based Dynamic Event-Triggered Tracking Control of A Networked One-DOF Link Manipulator Without Velocity Measurement
Jiankun Sun, Jun Yang, Shihua Li
, Available online  , doi: 10.1109/JAS.2019.1911738
Abstract HTML PDF
Abstract:
In networked robot manipulators that deeply integrate control, communication and computation, the controller design needs to take into consideration the limited or costly system resources and the presence of disturbances/uncertainties. To cope with these requirements, this paper proposes a novel dynamic event-triggered robust tracking control method for a one-degree of freedom (DOF) link manipulator with external disturbance and system uncertainties via a reduced-order generalized proportional-integral observer (GPIO). By only using the sampled-data position signal, a new sampled-data robust output feedback tracking controller is proposed based on a reduced-order GPIO to attenuate the undesirable influence of the external disturbance and the system uncertainties. To save the communication resources, we propose a discrete-time dynamic event-triggering mechanism (DETM), where the estimates and the control signal are transmitted and computed only when the proposed discrete-time DETM is violated. It is shown that with the proposed control method, both tracking control properties and communication properties can be significantly improved. Finally, simulation results are shown to demonstrate the feasibility and efficacy of the proposed control approach.
A Method for Deploying the Minimal Number of UAV Base Stations in Cellular Networks
Hailong Huang, Chao Huang, Dazhong Ma
, Available online  , doi: 10.1109/JAS.2019.1911813
Abstract HTML PDF
Abstract:
In this paper, we focus on the scenario of using unmanned aerial vehicles base stations (UAV-BSs) to serve cellular users. In particular, we focus on finding the minimum number of UAV-BSs as well as their deployment. We propose an optimization model which minimizes the number of UAV-BSs and optimize their positions such that the UE covered ratio is no less than the expectation of network suppliers, the UEs receive acceptable downlink rates, and the UAV-BSs can work in a sustainable manner. We show the NP-hardness of this problem and then propose a method to address it. The method first estimates the range of the number of UAV-BSs and then converts the original problem to one which maximizes the UE served ratio, given the number of UAV-BSs within that range. We present a maximizing algorithm to solve it with the proof of convergence. Extensive simulations based on a realistic dataset have been conducted to demonstrate the effectiveness of the proposed method.
Which is the Best PID Variant for Pneumatic Soft Robots? An Experimental Study
Ameer Hamza Khan, Zili Shao, Shuai Li, Qixin Wang, Nan Guan
, Available online  
Abstract HTML PDF
Abstract:
This paper presents an experimental study to compare the performance of model-free control strategies for pneumatic soft robots. Fabricated using soft materials, soft robots have gained much attention in academia and industry during recent years because of their inherent safety in human interaction. However, due to structural flexibility and compliance, mathematical models for these soft robots are nonlinear with an infinite degree of freedom (DOF). Therefore, accurate position (or orientation) control and optimization of their dynamic response remains a challenging task. Most existing soft robots currently employed in industrial and rehabilitation applications use model-free control algorithms such as PID. However, to the best of our knowledge, there has been no systematic study on the comparative performance of model-free control algorithms and their ability to optimize dynamic response, i.e., reduce overshoot and settling time. In this paper, we present comparative performance of several variants of model-free PID-controllers based on extensive experimental results. Additionally, most of the existing work on model-free control in pneumatic soft-robotic literature use manually tuned parameters, which is a time-consuming, labor-intensive task. We present a heuristic-based coordinate descent algorithm to tune the controller parameter automatically. We presented results for both manual tuning and automatic tuning using the Ziegler–Nichols method and proposed algorithm, respectively. We then used experimental results to statistically demonstrate that the presented automatic tuning algorithm results in high accuracy. The experiment results show that for soft robots, the PID-controller essentially reduces to the PI controller. This behavior was observed in both manual and automatic tuning experiments; we also discussed a rationale for removing the derivative term.

IEEE/CAA Journal of Automatica Sinica

  • Indexed in: SCIE, EI, Scopus, etc.
    CiteScore 2018: 5.31
    Rank:Top 9% (Category of Control and Systems Engineering), Top 10% (Categories of Information System and Artificial Intelligence)
×

IEEE/CAA Journal of Automatica Sinica is indexed in SCIE

Welcome your paper!