A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

Early Access

Display Type:         

Group Multi-Role Assignment With Conflicting Roles and Agents
Haibin Zhu
, Available online  , doi: 10.1109/JAS.2020.1003354
Abstract HTML PDF
Abstract:
Group role assignment (GRA) is originally a complex problem in role-based collaboration (RBC). The solution to GRA provides modelling techniques for more complex problems. GRA with constraints (GRA+) is categorized as a class of complex assignment problems. At present, there are few generally efficient solutions to this category of problems. Each special problem case requires a specific solution. Group multi-role assignment (GMRA) and GRA with conflicting agents on roles (GRACAR) are two problem cases in GRA+. The contributions of this paper include: 1) The formalization of a new problem of GRA+, called group multi-role assignment with conflicting roles and agents (GMAC), which is an extension to the combination of GMRA and GRACAR; 2) A practical solution based on an optimization platform; 3) A sufficient condition, used in planning, for solving GMAC problems; and 4) A clear presentation of the benefits in avoiding conflicts when dealing with GMAC. The proposed methods are verified by experiments, simulations, proofs and analysis.
Towards a Theoretical Framework of Autonomous Systems Underpinned by Intelligence and Systems Sciences
Yingxu Wang, Ming Hou, Konstantinos N. Plataniotis, Sam Kwong, Henry Leung, Edward Tunstel, Imre J. Rudas, Ljiljana Trajkovic
, Available online  
Abstract HTML PDF
Abstract:
Autonomous systems are an emerging AI technology functioning without human intervention underpinned by the latest advances in intelligence, cognition, computer, and systems sciences. This paper explores the intelligent and mathematical foundations of autonomous systems. It focuses on structural and behavioral properties that constitute the intelligent power of autonomous systems. It explains how system intelligence aggregates from reflexive, imperative, adaptive intelligence to autonomous and cognitive intelligence. A hierarchical intelligence model (HIM) is introduced to elaborate the evolution of human and system intelligence as an inductive process. The properties of system autonomy are formally analyzed towards a wide range of applications in computational intelligence and systems engineering. Emerging paradigms of autonomous systems including brain-inspired systems, cognitive robots, and autonomous knowledge learning systems are described. Advances in autonomous systems will pave a way towards highly intelligent machines for augmenting human capabilities.
A Multi-Layered Gravitational Search Algorithm for Function Optimization and Real-World Problems
Yirui Wang, Shangce Gao, Mengchu Zhou, Yang Yu
, Available online  
Abstract HTML PDF
Abstract:
A gravitational search algorithm (GSA) uses gravitational force among individuals to evolve population. Though GSA is an effective population-based algorithm, it exhibits low search performance and premature convergence. To ameliorate these issues, this work proposes a multi-layered GSA called MLGSA. Inspired by the two-layered structure of GSA, four layers consisting of population, iteration-best, personal-best and global-best layers are constructed. Hierarchical interactions among four layers are dynamically implemented in different search stages to greatly improve both exploration and exploitation abilities of population. Performance comparison between MLGSA and nine existing GSA variants on twenty-nine CEC2017 test functions with low, medium and high dimensions demonstrates that MLGSA is the most competitive one. It is also compared with four particle swarm optimization variants to verify its excellent performance. Moreover, the analysis of hierarchical interactions is discussed to illustrate the influence of a complete hierarchy on its performance. The relationship between its population diversity and fitness diversity is analyzed to clarify its search performance. Its computational complexity is given to show its efficiency. Finally, it is applied to twenty-two CEC2011 real-world optimization problems to show its practicality.
A Novel Automatic Classification System Based on Hybrid Unsupervised and Supervised Machine Learning for Electrospun Nanofibers
Cosimo Ieracitano, Annunziata Paviglianiti, Maurizio Campolo, Amir Hussain, Eros Pasero, Francesco Carlo Morabito
, Available online  , doi: 10.1109/JAS.2020.1003387
Abstract HTML PDF
Abstract:
The manufacturing of nanomaterials by the electrospinning process requires accurate and meticulous inspection of related scanning electron microscope (SEM) images of the electrospun nanofiber, to ensure that no structural defects are produced. The presence of anomalies prevents practical application of the electrospun nanofibrous material in nanotechnology. Hence, the automatic monitoring and quality control of nanomaterials is a relevant challenge in the context of Industry 4.0. In this paper, a novel automatic classification system for homogenous (anomaly-free) and non-homogenous (with defects) nanofibers is proposed. The inspection procedure aims at avoiding direct processing of the redundant full SEM image. Specifically, the image to be analyzed is first partitioned into sub-images (nanopatches) that are then used as input to a hybrid unsupervised and supervised machine learning system. In the first step, an autoencoder (AE) is trained with unsupervised learning to generate a code representing the input image with a vector of relevant features. Next, a multilayer perceptron (MLP), trained with supervised learning, uses the extracted features to classify non-homogenous nanofiber (NH-NF) and homogenous nanofiber (H-NF) patches. The resulting novel AE-MLP system is shown to outperform other standard machine learning models and other recent state-of-the-art techniques, reporting accuracy rate up to 92.5%. In addition, the proposed approach leads to model complexity reduction with respect to other deep learning strategies such as convolutional neural networks (CNN). The encouraging performance achieved in this benchmark study can stimulate the application of the proposed scheme in other challenging industrial manufacturing tasks.
Modeling and Trajectory Tracking Control for Flapping-wing micro Aerial Vehicles
Wei He, Xinxing Mu, Liang Zhang, Yao Zou
, Available online  , doi: 10.1109/JAS.2020.1003417
Abstract HTML PDF
Abstract:
This paper studies the trajectory tracking problem of flapping-wing micro aerial vehicles (FWMAVs) in the longitudinal plane. First of all, the kinematics and dynamics of the FWMAV are established, wherein the aerodynamic force and torque generated by flapping wings and the tail wing are explicitly formulated with respect to the flapping frequency of the wings and the degree of tail wing inclination. To achieve autonomous tracking, an adaptive control scheme is proposed under the hierarchical framework. Specifically, a bounded position controller with hyperbolic tangent functions is designed to produce the desired aerodynamic force, and a pitch command is extracted from the designed position controller. Next, an adaptive attitude controller is designed to track the extracted pitch command, where a radial basis function neural network is introduced to approximate the unknown aerodynamic perturbation torque. Finally, the flapping frequency of the wings and the degree of tail wing inclination are calculated from the designed position and attitude controllers, respectively. In terms of Lyapunov’s direct method, it is shown that the tracking errors are bounded and ultimately converge to a small neighborhood around the origin. Simulations are carried out to verify the effectiveness of the proposed control scheme.
Adaptive Pseudo Inverse Control for a Class of Nonlinear Asymmetric and Saturated Nonlinear Hysteretic Systems
Xiuyu Zhang, Ruijing Jing, Zhiwei Li, Zhi Li, Chun-Yi Su, Xinkai Chen
, Available online  
Abstract HTML PDF
Abstract:
This paper aims at eliminating the asymmetric and saturated hysteresis nonlinearities by designing hysteresis pseudo inverse compensator and robust adaptive dynamic surface control (DSC) scheme. The “pseudo inverse” means that an on-line calculation mechanism of approximate control signal is developed by applying a searching method to the designed temporary control signal where the true control signal is included. The main contributions are summarized as: 1) to our best knowledge, it is the first time to compensate the asymmetric and saturated hysteresis by using hysteresis pseudo inverse compensator because the construction of the true saturated-type hysteresis inverse model is very difficult; 2) by designing the saturated-type hysteresis pseudo inverse compensator, the construction of true explicit hysteresis inverse and the identifications of its corresponding unknown parameters are not required when dealing with the saturated-type hysteresis; 3) by combining DSC technique with the tracking error transformed function, the “explosion of complexity” problem in backstepping method is overcome and the prespecified tracking performance is achieved. Analysis of stability and experimental results on the hardware-in-loop platform illustrate the effectiveness of the proposed adaptive pseudo inverse control scheme.
Efficient and High-quality Recommendations via Momentum-incorporated Parallel Stochastic Gradient Descent-based Learning
Xin Luo, Wen Qin, Ani Dong, Khaled Sedraoui, MengChu Zhou
, Available online  , doi: 10.1109/JAS.2020.1003396
Abstract HTML PDF
Abstract:
A recommender system (RS) relying on latent factor analysis usually adopts stochastic gradient descent (SGD) as its learning algorithm. However, owing to its serial mechanism, an SGD algorithm suffers from low efficiency and scalability when handling large-scale industrial problems. Aiming at addressing this issue, this study proposes a momentum-incorporated parallel stochastic gradient descent (MPSGD) algorithm, whose main idea is two-fold: a) implementing parallelization via a novel data-splitting strategy, and b) accelerating convergence rate by integrating momentum effects into its training process. With it, an MPSGD-based latent factor (MLF) model is achieved, which is capable of performing efficient and high-quality recommendations. Experimental results on four high-dimensional and sparse matrices generated by industrial RS indicate that owing to an MPSGD algorithm, an MLF model outperforms the existing state-of-the-art ones in both computational efficiency and scalability.
Global-Attention-Based Neural Networks for Vision Language Intelligence
Pei Liu, Yingjie Zhou, Dezhong Peng, Dapeng Wu
, Available online  , doi: 10.1109/JAS.2020.1003402
Abstract HTML PDF
Abstract:
In this paper, we develop a novel global-attention-based neural network (GANN) for vision language intelligence, specifically, image captioning (language description of a given image). As many previous works, an encoder-decoder framework is adopted in our proposed model, in which the encoder is responsible for encoding the region proposal features and extracting global caption feature based on a specially designed module of predicting the caption objects, and the decoder generates captions by taking the obtained global caption feature along with the encoded visual features as inputs for each attention head of the decoder layer. The global caption feature is introduced for the purpose of exploring the latent contributions of extracted region proposals for image captioning, and further helping the decoder better focus on the most relevant proposals so as to extract more accurate visual features in each time step of caption generation. Our GANN architecture is implemented by incorporating the global caption feature into the attention weight calculation phase in the word predication process in each head of the decoder layer. In our experiments, we qualitatively analyzed the proposed model, and quantitatively evaluated several state-of-the-art schemes with GANN on the MS-COCO dataset. Experimental results demonstrate the effectiveness of the proposed global attention mechanism for image captioning.
A New Safety Assessment Method Based on Belief Rule Base With Attribute Reliability
Zhichao Feng, Wei He, Zhijie Zhou, Xiaojun Ban, Changhua Hu, Xiaoxia Han
, Available online  , doi: 10.1109/JAS.2020.1003399
Abstract HTML PDF
Abstract:
Safety assessment is one of important aspects in health management. In safety assessment for practical systems, three problems exist: lack of observation information, high system complexity and environment interference. Belief rule base with attribute reliability (BRB-r) is an expert system that provides a useful way for dealing with these three problems. In BRB-r, once the input information is unreliable, the reliability of belief rule is influenced, which further influences the accuracy of its output belief degree. On the other hand, when many system characteristics exist, the belief rule combination will explode in BRB-r, and the BRB-r based safety assessment model becomes too complicated to be applied. Thus, in this paper, to balance the complexity and accuracy of the safety assessment model, a new safety assessment model based on BRB-r with considering belief rule reliability is developed for the first time. In the developed model, a new calculation method of the belief rule reliability is proposed with considering both attribute reliability and global ignorance. Moreover, to reduce the influence of uncertainty of expert knowledge, an optimization model for the developed safety assessment model is constructed. A case study of safety assessment of liquefied natural gas (LNG) storage tank is conducted to illustrate the effectiveness of the new developed model.
Privacy Preserving Solution for the Asynchronous Localization of Underwater Sensor Networks
Haiyan Zhao, Jing Yan, Xiaoyuan Luo, Xinping Guan
, Available online  , doi: 10.1109/JAS.2020.1003312
Abstract HTML PDF
Abstract:
Location estimation of underwater sensor networks (USNs) has become a critical technology, due to its fundamental role in the sensing, communication and control of ocean volume. However, the asynchronous clock, security attack and mobility characteristics of underwater environment make localization much more challenging as compared with terrestrial sensor networks. This paper is concerned with a privacy-preserving asynchronous localization issue for USNs. Particularly, a hybrid network architecture that includes surface buoys, anchor nodes, active sensor nodes and ordinary sensor nodes is constructed. Then, an asynchronous localization protocol is provided, through which two privacy-preserving localization algorithms are designed to estimate the locations of active and ordinary sensor nodes. It is worth mentioning that, the proposed localization algorithms reveal disguised positions to the network, while they do not adopt any homomorphic encryption technique. More importantly, they can eliminate the effect of asynchronous clock, i.e., clock skew and offset. The performance analyses for the privacy-preserving asynchronous localization algorithms are also presented. Finally, simulation and experiment results reveal that the proposed localization approach can avoid the leakage of position information, while the location accuracy can be significantly enhanced as compared with the other works.
Convergence Analysis of a Self-Stabilizing Algorithm for Minor Component Analysis
Gang Liu, Haidi Dong, Yingbin Gao
, Available online  , doi: 10.1109/JAS.2019.1911636
Abstract HTML PDF
Abstract:
The Möller algorithm is a self-stabilizing minor component analysis algorithm. This research document involves the study of the convergence and dynamic characteristics of the Möller algorithm using the deterministic discrete time (DDT) methodology. Unlike other analysis methodologies, the DDT methodology is capable of serving the distinct time characteristic and having no constraint conditions. Through analyzing the dynamic characteristics of the weight vector, several convergence conditions are drawn, which are beneficial for its application. The performing computer simulations and real applications demonstrate the correctness of the analysis’s conclusions.
Sliding Mode Control for Nonlinear Markovian Jump Systems Under Denial-of-Service Attacks
Lei Liu, Lifeng Ma, Yiwen Wang, Jie Zhang, Yuming Bo
, Available online  , doi: 10.1109/JAS.2019.1911531
Abstract HTML PDF
Abstract:
This paper investigates the sliding mode control (SMC) problem for a class of discrete-time nonlinear networked Markovian jump systems (MJSs) in the presence of probabilistic denial-of-service (DoS) attacks. The communication network via which the data is propagated is unsafe and the malicious adversary can attack the system during state feedback. By considering random Denial-of-Service attacks, a new sliding mode variable is designed, which takes into account the distribution information of the probabilistic attacks. Then, by resorting to Lyapunov theory and stochastic analysis methods, sufficient conditions are established for the existence of the desired sliding mode controller, guaranteeing both reachability of the designed sliding surface and stability of the resulting sliding motion. Finally, a simulation example is given to demonstrate the effectiveness of the proposed sliding mode control algorithm.
An Improved Torque Sensorless Speed Control Method for Electric Assisted Bicycle With Consideration of Coordinate Conversion
Tinghua Li, Qinghua Yang, Xiaowei Tu, Bin Ren
, Available online  , doi: 10.1109/JAS.2020.1003360
Abstract HTML PDF
Abstract:
In this paper, we propose an improved torque sensorless speed control method for electric assisted bicycle, this method considers the coordinate conversion. A low-pass filter is designed in disturbance observer to estimate and compensate the variable disturbance during cycling. A DC motor provides assisted power driving, the assistance method is based on the real-time wheel angular velocity and coordinate system transformation. The effect of observer is proved, and the proposed method guarantees stability under disturbances. It is also compared to the existing methods and their performances are illustrated through simulations. The proposed method improves the performance both in rapidity and stability.
Dense Mapping From an Accurate Tracking SLAM
Weijie Huang, Guoshan Zhang, Xiaowei Han
, Available online  , doi: 10.1109/JAS.2020.1003357
Abstract HTML PDF
Abstract:
In recent years, reconstructing a sparse map from a simultaneous localization and mapping (SLAM) system on a conventional CPU has undergone remarkable progress. However, obtaining a dense map from the system often requires a high-performance GPU to accelerate computation. This paper proposes a dense mapping approach which can remove outliers and obtain a clean 3D model using a CPU in real-time. The dense mapping approach processes keyframes and establishes data association by using multi-threading technology. The outliers are removed by changing detections of associated vertices between keyframes. The implicit surface data of inliers is represented by a truncated signed distance function and fused with an adaptive weight. A global hash table and a local hash table are used to store and retrieve surface data for data-reuse. Experiment results show that the proposed approach can precisely remove the outliers in scene and obtain a dense 3D map with a better visual effect in real-time.
Joint Algorithm of Message Fragmentation and No-Wait Scheduling for Time-Sensitive Networks
Xi Jin, Changqing Xia, Nan Guan, Peng Zeng
, Available online  
Abstract HTML PDF
Abstract:
Time-sensitive networks (TSNs) support not only traditional best-effort communications but also deterministic communications, which send each packet at a deterministic time so that the data transmissions of networked control systems can be precisely scheduled to guarantee hard real-time constraints. No-wait scheduling is suitable for such TSNs and generates the schedules of deterministic communications with the minimal network resources so that all of the remaining resources can be used to improve the throughput of best-effort communications. However, due to inappropriate message fragmentation, the real-time performance of no-wait scheduling algorithms is reduced. Therefore, in this paper, joint algorithms of message fragmentation and no-wait scheduling are proposed. First, a specification for the joint problem based on optimization modulo theories is proposed so that off-the-shelf solvers can be used to find optimal solutions. Second, to improve the scalability of our algorithm, the worst-case delay of messages is analyzed, and then, based on the analysis, a heuristic algorithm is proposed to construct low-delay schedules. Finally, we conduct extensive test cases to evaluate our proposed algorithms. The evaluation results indicate that, compared to existing algorithms, the proposed joint algorithm improves schedulability by up to 50%.
Theory and Experiments on Enclosing Control of Multi-Agent Systems
Yihui Wang, Yanfei Liu, Zhong Wang
, Available online  
Abstract HTML PDF
Abstract:
This paper proposes a control strategy called enclosing control. This strategy can be described as follows: the followers design their control inputs based on the state information of neighbor agents and move to specified positions. The convex hull formed by these followers contains the leaders. We use the single-integrator model to describe the dynamics of the agents and proposes a continuous-time control protocol and a sampled-data based protocol for multi-agent systems with stationary leaders with fixed network topology. Then the state differential equations are analyzed to obtain the parameter requirements for the system to achieve convergence. Moreover, the conditions achieving enclosing control are established for both protocols. A special enclosing control with no leader located on the convex hull boundary under the protocols is studied, which can effectively prevent enclosing control failures caused by errors in the system. Moreover, several simulations are proposed to validate theoretical results and compare the differences between the three control protocols. Finally, experimental results on the multi-robot platform are provided to verify the feasibility of the protocol in the physical system.
Speed and Accuracy Tradeoff for LiDAR Data Based Road Boundary Detection
Guojun Wang, Jian Wu, Rui He, Bin Tian
, Available online  , doi: 10.1109/JAS.2020.1003414
Abstract HTML PDF
Abstract:
Road boundary detection is essential for autonomous vehicle localization and decision-making, especially under GPS signal loss and lane discontinuities. For road boundary detection in structural environments, obstacle occlusions and large road curvature are two significant challenges. However, an effective and fast solution for these problems has remained elusive. To solve these problems, a speed and accuracy tradeoff method for LiDAR-based road boundary detection in structured environments is proposed. The proposed method consists of three main stages: 1) a multi-feature based method is applied to extract feature points; 2) a road-segmentation-line-based method is proposed for classifying left and right feature points; 3) an iterative Gaussian Process Regression (GPR) is employed for filtering out false points and extracting boundary points. To demonstrate the effectiveness of the proposed method, KITTI datasets is used for comprehensive experiments, and the performance of our approach is tested under different road conditions. Comprehensive experiments show the road-segmentation-line-based method can classify left, and right feature points on structured curved roads, and the proposed iterative Gaussian Process Regression can extract road boundary points on varied road shapes and traffic conditions. Meanwhile, the proposed road boundary detection method can achieve real-time performance with an average of 70.5 ms per frame.
Scalable Clock Synchronization Analysis: A Symmetric Noncooperative Output Feedback Tubes-MPC Approach
Ting Wang, Xiaoquan Xu, Xiaoming Tang
, Available online  , doi: 10.1109/JAS.2020.1003363
Abstract HTML PDF
Abstract:
In the cyber-physical environment, the clock synchronization algorithm is required to have better expansion for network scale. In this paper, a new measurement model of observability under the equivalent transformation of minimum mean square error (MMSE) is constructed based on basic measurement unit (BMU), which can realize the scaled expansion of MMSE measurement. Based on the state updating equation of absolute clock and the decoupled measurement model of MMSE-like equivalence, which is proposed to calculate the positive definite invariant set by using the theoretical-practical Luenberger observer as the synthetical observer, the local noncooperative optimal control problem is built, and the clock synchronization system driven by the ideal state of local clock can reach the exponential convergence for synchronization performance. Different from the problem of general linear system regulators, the state estimation error and state control error are analyzed in the established affine system based on the set-theory-in-control to achieve the quantification of state deviation caused by noise interference. Based on the BMU for isomorphic state map, the synchronization performance of clock states between multiple sets of representative nodes is evaluated, and the scale of evaluated system can be still expanded. After the synchronization is completed, the state of perturbation system remains in the maximum range of measurement accuracy, and the state of nominal system can be stabilized at the ideal state for local clock and realizes the exponential convergence of the clock synchronization system.
An Overview of Calibration Technology of Industrial Robots
Zhibin Li, Shuai Li, Xin Luo
, Available online  , doi: 10.1109/JAS.2020.1003381
Abstract HTML PDF
Abstract:
With the continuous improvement of automation, industrial robots have become an indispensable part of automated production lines. They widely used in a number of industrial production activities, such as spraying, welding, handling, etc., and have a great role in these sectors. Recently, the robotic technology is developing towards high precision, high intelligence. Robot calibration technology has a great significance to improve the accuracy of robot. However, it has much work to be done in the identification of robot parameters. The parameter identification work of existing serial and parallel robots is introduced. On the one hand, it summarizes the methods for parameter calibration and discusses their advantages and disadvantages. On the other hand, the application of parameter identification is introduced. This overview has a great reference value for robot manufacturers to choose proper identification method, points further research areas for researchers. Finally, this paper analyzes the existing problems in robot calibration, which may be worth researching in the future.
A Behavioral Authentication Method for Mobile Based on Browsing Behaviors
Dongxiang Chen, Zhijun Ding, Chungang Yan, Mimi Wang
, Available online  , doi: 10.1109/JAS.2019.1911648
Abstract HTML PDF
Abstract:
The passwords for unlocking the mobile devices are relatively simple, easier to be stolen, which causes serious potential security problems. An important research direction of identity authentication is to establish user behavior models to authenticate users. In this paper, a mobile terminal APP browsing behavioral authentication system architecture which synthesizes multiple factors is designed. This architecture is suitable for users using the mobile terminal APP in the daily life. The architecture includes data acquisition, data processing, feature extraction, and sub model training. We can use this architecture for continuous authentication when the user uses APP at the mobile terminal.
Towards Collaborative Robotics in Top View Surveillance: A Framework for Multiple Object Tracking by Detection Using Deep Learning
Imran Ahmed, Sadia Din, Gwanggil Jeon, Francesco Piccialli, Giancarlo Fortino
, Available online  
Abstract HTML PDF
Abstract:
Collaborative Robotics is one of the high-interest research topics in the area of academia and industry. It has been progressively utilized in numerous applications, particularly in intelligent surveillance systems. It allows the deployment of smart cameras or optical sensors with computer vision techniques, which may serve in several object detection and tracking tasks. These tasks have been considered challenging and high-level perceptual problems, frequently dominated by relative information about the environment, where main concerns such as occlusion, illumination, background, object deformation, and object class variations are commonplace. In order to show the importance of top view surveillance, a collaborative robotics framework has been presented. It can assist in the detection and tracking of multiple objects in top view surveillance. The framework consists of a smart robotic camera embedded with the visual processing unit. The existing pre-trained deep learning models named SSD and YOLO has been adopted for object detection and localization. The detection models are further combined with different tracking algorithms, including GOTURN, MEDIANFLOW, TLD, KCF, MIL, and BOOSTING. These algorithms, along with detection models, helps to track and predict the trajectories of detected objects. The pre-trained models are employed; therefore, the generalization performance is also investigated through testing the models on various sequences of top view data set. The detection models achieved maximum True Detection Rate 93% to 90% with a maximum 0.6% False Detection Rate. The tracking results of different algorithms are nearly identical, with tracking accuracy ranging from 90% to 94%. Furthermore, a discussion has been carried out on output results along with future guidelines.
NeuroBiometric: An Eye Blink Based Biometric Authentication System Using an Event-Based Neuromorphic Vision Sensor
Guang Chen, Fa Wang, Xiaoding Yuan, Zhijun Li, Zichen Liang, Alois Knoll
, Available online  
Abstract HTML PDF
Abstract:
The rise of the Internet and identity authentication systems has brought convenience to people’s lives but has also introduced the potential risk of privacy leaks. Existing biometric authentication systems based on explicit and static features bear the risk of being attacked by mimicked data. This work proposes a highly efficient biometric authentication system based on transient eye blink signals that are precisely captured by a neuromorphic vision sensor with microsecond-level temporal resolution. The neuromorphic vision sensor only transmits the local pixel-level changes induced by the eye blinks when they occur, which leads to advantageous characteristics such as an ultra-low latency response. We first propose a set of effective biometric features describing the motion, speed, energy and frequency signal of eye blinks based on the microsecond temporal resolution of event densities. We then train the ensemble model and non-ensemble model with our NeuroBiometric dataset for biometrics authentication. The experiments show that our system is able to identify and verify the subjects with the ensemble model at an accuracy of 0.948 and with the non-ensemble model at an accuracy of 0.925. The low false positive rates (about 0.002) and the highly dynamic features are not only hard to reproduce but also avoid recording visible characteristics of a user’s appearance. The proposed system sheds light on a new path towards safer authentication using neuromorphic vision sensors.
MU-GAN: Facial Attribute Editing Based on Multi-Attention Mechanism
Ke Zhang, Yukun Su, Xiwang Guo, Liang Qi, Zhenbing Zhao
, Available online  , doi: 10.1109/JAS.2020.1003390
Abstract HTML PDF
Abstract:
Facial attribute editing has mainly two objectives: 1) translating image from a source domain to a target one, and 2) only changing the facial regions related to a target attribute and preserving the attribute-excluding details. In this work, we propose a multi-attention U-Net-based generative adversarial network (MU-GAN). First, we replace a classic convolutional encoder-decoder with a symmetric U-Net-like structure in a generator, and then apply an additive attention mechanism to build attention-based U-Net connections for adaptively transferring encoder representations to complement a decoder with attribute-excluding detail and enhance attribute editing ability. Second, a self-attention (SA) mechanism is incorporated into convolutional layers for modeling long-range and multi-level dependencies across image regions. Experimental results indicate that our method is capable of balancing attribute editing ability and details preservation ability, and can decouple the correlation among attributes. It outperforms the state-of-the-art methods in terms of attribute manipulation accuracy and image quality. Our code is available at https://github.com/SuSir1996/MU-GAN.
Reinforcement Learning Based Data Fusion Method for Multi-Sensors
Tongle Zhou, Mou Chen, Yu Kang, Jie Zou
, Available online  , doi: 10.1109/JAS.2020.1003180
Abstract HTML PDF
Abstract:
In order to improve detection system robustness and reliability, multi-sensors fusion is used in modern air combat. In this paper, a data fusion method based on reinforcement learning is developed for multi-sensors. Initially, the cubic B-spline interpolation is used to solve time alignment problems of multi-source data. Then, the reinforcement learning based data fusion (RLBDF) method is proposed to obtain the fusion results. With the case that the priori knowledge of target is obtained, the fusion accuracy reinforcement is realized by the error between fused value and actual value. Furthermore, the Fisher information is instead used as the reward if the priori knowledge is unable to be obtained. Simulations results verify that the developed method is feasible and effective for the multi-sensors data fusion in air combat.
Neural-Network-Based Nonlinear Model Predictive Tracking Control of a Pneumatic Muscle Actuator-Driven Exoskeleton
Yu Cao, Jian Huang
, Available online  , doi: 10.1109/JAS.2020.1003351
Abstract HTML PDF
Abstract:
Pneumatic muscle actuators (PMAs) are compliant and suitable for robotic devices that have been shown to be effective in assisting patients with neurologic injuries, such as strokes, spinal cord injuries, etc., to accomplish rehabilitation tasks. However, because PMAs have nonlinearities, hysteresis, and uncertainties, etc., complex mechanisms are rarely involved in the study of PMA-driven robotic systems. In this paper, we use nonlinear model predictive control (NMPC) and an extension of the echo state network called an echo state Gaussian process (ESGP) to design a tracking controller for a PMA-driven lower limb exoskeleton. The dynamics of the system include the PMA actuation and mechanism of the leg orthoses; thus, the system is represented by two nonlinear uncertain subsystems. To facilitate the design of the controller, joint angles of leg orthoses are forecasted based on the universal approximation ability of the ESGP. A gradient descent algorithm is employed to solve the optimization problem and generate the control signal. The stability of the closed-loop system is guaranteed when the ESGP is capable of approximating system dynamics. Simulations and experiments are conducted to verify the approximation ability of the ESGP and achieve gait pattern training with four healthy subjects.
Four Wheel Independent Drive Electric Vehicle Lateral Stability Control Strategy
Yantao Tian, Xuanhao Cao, Xiaoyu Wang, Yanbo Zhao
, Available online  , doi: 10.1109/JAS.2019.1911729
Abstract HTML PDF
Abstract:
In this paper, a kind of lateral stability control strategy is put forward about the four wheel independent drive electric vehicle. The design of control system adopts hierarchical structure. Unlike the previous control strategy, this paper introduces a method which is the combination of sliding mode control and optimal allocation algorithm. According to the driver’s operation commands (steering angle and speed), the steady state responses of the sideslip angle and yaw rate are obtained. Based on this, the reference model is built. Upper controller adopts the sliding mode control principle to obtain the desired yawing moment demand. Lower controller is designed to satisfy the desired yawing moment demand by optimal allocation of the tire longitudinal forces. Firstly, the optimization goal is built to minimize the actuator cost. Secondly, the weighted least-square method is used to design the tire longitudinal forces optimization distribution strategy under the constraint conditions of actuator and the friction oval. Beyond that, when the optimal allocation algorithm is not applied, a method of axial load ratio distribution is adopted. Finally, CarSim associated with Simulink simulation experiments are designed under the conditions of different velocities and different pavements. The simulation results show that the control strategy designed in this paper has a good following effect comparing with the reference model and the sideslip angle \begin{document}$ \beta $\end{document} is controlled within a small rang at the same time. Beyond that, based on the optimal distribution mode, the electromagnetic torque phase of each wheel can follow the trend of the vertical force of the tire, which shows the effectiveness of the optimal distribution algorithm.
DRRS-BC: Decentralized Routing Registration System Based on Blockchain
Huimin LU, Yu TANG, Yi SUN
, Available online  
Abstract HTML PDF
Abstract:
The Border Gateway Protocol (BGP) has become the indispensible infrastructure of the Internet as a typical inter-domain routing protocol. However, it is vulnerable to misconfigurations and malicious attacks since BGP does not provide enough authentication mechanism to the route advertisement. As a result, it has brought about many security incidents with huge economic losses. Exiting solutions to the routing security problem such as S-BGP, So-BGP, Ps-BGP and RPKI, are based on the Public Key Infrastructure and face a high security risk from the centralized structure. In this paper, we propose the decentralized blockchain-based route registration framework-Decentralized Route Registration System based on Blockchain (DRRS-BC). In DRRS-BC, we produce a global transaction ledge by the information of address prefixes and autonomous system numbers between multiple organizations and ASs, which is maintained by all blockchain nodes and further used for authentication. By applying blockchain, DRRS-BC perfectly solves the problems of identity authentication, behavior authentication as well as the promotion and deployment problem rather than depending on the authentication center. Moreover, it resists to prefix and subprefix hijacking attacks and meets the performance and security requirements of route registration.
On Performance Gauge of Average Multi-Cue Multi-Choice Decision Making: A Converse Lyapunov Approach
Mehdi Firouznia, Qing Hui
, Available online  
Abstract HTML PDF
Abstract:
Motivated by the converse Lyapunov technique for investigating converse results of semistable switched systems in control theory, this paper utilizes a constructive induction method to identify a cost function for performance gauge of an average, multi-cue multi-choice (MCMC), cognitive decision making model over a switching time interval. It shows that such a constructive cost function can be evaluated through an abstract energy called Lyapunov function at initial conditions. Hence, the performance gauge problem for the average MCMC model becomes the issue of finding such a Lyapunov function, leading to a possible way for designing corresponding computational algorithms via iterative methods such as adaptive dynamic programming. In order to reach this goal, a series of technical results are presented for the construction of such a Lyapunov function and its mathematical properties are discussed in details. Finally, a major result of guaranteeing the existence of such a Lyapunov function is rigorously proved.
A Risk-Averse Remaining Useful Life Estimation for Predictive Maintenance
Chuang Chen, Ningyun Lu, Bin Jiang, Cunsong Wang
, Available online  
Abstract HTML PDF
Abstract:
Remaining useful life (RUL) prediction is an advanced technique for system maintenance scheduling. Most of existing RUL prediction methods are only interested in the precision of RUL estimation; the adverse impact of over-estimated RUL on maintenance scheduling is not of concern. In this work, an RUL estimation method with risk-averse adaptation is developed which can reduce the over-estimation rate while maintaining a reasonable under-estimation level. The proposed method includes a module of degradation feature selection to obtain crucial features which reflect system degradation trends. Then, the latent structure between the degradation features and the RUL labels is modeled by a support vector regression (SVR) model and a long short-term memory (LSTM) network, respectively. To enhance the prediction robustness and increase its marginal utility, the SVR model and the LSTM model are integrated to generate a hybrid model via three connection parameters. By designing a cost function with penalty mechanism, the three parameters are determined using a modified grey wolf optimization algorithm. In addition, a cost metric is proposed to measure the benefit of such a risk-averse predictive maintenance method. Verification is done using an aero-engine data set from NASA. The results show the feasibility and effectiveness of the proposed RUL estimation method and the predictive maintenance strategy.
Exact Controllability and Exact Observability of Descriptor Infinite Dimensional Systems
Zhaoqiang Ge
, Available online  , doi: 10.1109/JAS.2020.1003411
Abstract HTML PDF
Abstract:
Necessary and sufficient conditions for the exact controllability and exact observability of a descriptor infinite dimensional system are obtained in the sense of distributional solution. These general results are used to examine the exact controllability and exact observability of the Dzektser equation in the theory of seepage and the exact controllability of wave equation.
Recovery of Collided RFID Tags With Frequency Drift on Physical Layer
Junzhi Li, Haifeng Wu, Yu Zeng
, Available online  , doi: 10.1109/JAS.2019.1911720
Abstract HTML PDF
Abstract:
In a passive ultra-high frequency (UHF) radio frequency identification (RFID) system, the recovery of collided tag signals on a physical layer can enhance identification efficiency. However, frequency drift is very common in UHF RFID systems, and will have an influence on the recovery on the physical layer. To address the problem of recovery with the frequency drift, this paper adopts a radial basis function (RBF) network to separate the collision signals, and decode the signals via FM0 to recovery collided RFID tags. Numerical results show that the method in this paper has better performance of symbol error rate (SER) and separation efficiency compared to conventional methods when frequency drift occurs.
Big Data Analytics in Healthcare — A Systematic Literature Review and Roadmap for Practical Implementation
Sohail Imran, Tariq Mahmood, Ahsan Morshed, Timos Sellis
, Available online  , doi: 10.1109/JAS.2020.1003384
Abstract HTML PDF
Abstract:
The advent of healthcare information management systems (HIMSs) continues to produce large volumes of healthcare data for patient care and compliance and regulatory requirements at a global scale. Analysis of this big data allows for boundless potential outcomes for discovering knowledge. Big data analytics (BDA) in healthcare can, for instance, help determine causes of diseases, generate effective diagnoses, enhance QoS guarantees by increasing efficiency of the healthcare delivery and effectiveness and viability of treatments, generate accurate predictions of readmissions, enhance clinical care, and pinpoint opportunities for cost savings. However, BDA implementations in any domain are generally complicated and resource-intensive with a high failure rate and no roadmap or success strategies to guide the practitioners. In this paper, we present a comprehensive roadmap to derive insights from BDA in the healthcare (patient care) domain, based on the results of a systematic literature review. We initially determine big data characteristics for healthcare and then review BDA applications to healthcare in academic research focusing particularly on NoSQL databases. We also identify the limitations and challenges of these applications and justify the potential of NoSQL databases to address these challenges and further enhance BDA healthcare research. We then propose and describe a state-of-the-art BDA architecture called Med-BDA for healthcare domain which solves all current BDA challenges and is based on the latest zeta big data paradigm. We also present success strategies to ensure the working of Med-BDA along with outlining the major benefits of BDA applications to healthcare. Finally, we compare our work with other related literature reviews across twelve hallmark features to justify the novelty and importance of our work. The aforementioned contributions of our work are collectively unique and clearly present a roadmap for clinical administrators, practitioners and professionals to successfully implement BDA initiatives in their organizations.
Dynamic Hand Gesture Recognition Based on Short-Term Sampling Neural Networks
Wenjin Zhang, Jiacun Wang, Fangping Lan
, Available online  
Abstract HTML PDF
Abstract:
Hand gestures are a natural way for human-robot interaction. Vision based dynamic hand gesture recognition has become a hot research topic due to its various applications. This paper presents a novel deep learning network for hand gesture recognition. The network integrates several well-proved modules together to learn both short-term and long-term features from video inputs and meanwhile avoid intensive computation. To learn short-term features, each video input is segmented into a fixed number of frame groups. A frame is randomly selected from each group and represented as an RGB image as well as an optical flow snapshot. These two entities are fused and fed into a convolutional neural network (ConvNet) for feature extraction. The ConvNets for all groups share parameters. To learn long-term features, outputs from all ConvNets are fed into a long short-term memory (LSTM) network, by which a final classification result is predicted. The new model has been tested with two popular hand gesture datasets, namely the Jester dataset and Nvidia dataset. Comparing with other models, our model produced very competitive results. The robustness of the new model has also been proved with an augmented dataset with enhanced diversity of hand gestures.
Property Preservation of Petri Synthesis Net Based Representation for Embedded Systems
Chuanliang Xia, Chengdong Li
, Available online  , doi: 10.1109/JAS.2020.1003003
Abstract HTML PDF
Abstract:
Embedded systems have numerous applications in everyday life. Petri-net-based representation for embedded systems (PRES+) is an important methodology for the modeling and analysis of these embedded systems. For a large complex embedded system, the state space explosion is a difficult problem for PRES+ to model and analyze. The Petri net synthesis method allows one to bypass the state space explosion issue. To solve this problem, as well as model and analyze large complex systems, two synthesis methods for PRES+ are presented in this paper. First, the property preservation of the synthesis shared transition set method is investigated. The property preservation of the synthesis shared transition subnet set method is then studied. An abstraction-synthesis-refinement representation method is proposed. Through this representation method, the synthesis shared transition set approach is used to investigate the property preservation of the synthesis shared transition subnet set operation. Under certain conditions, several important properties of these synthetic nets are preserved, namely reachability, timing, functionality, and liveness. An embedded control system model is used as an example to illustrate the effectiveness of these synthesis methods for PRES+.
Exponential-Alpha Safety Criteria of a Class of Dynamic Systems with Barrier Functions
Zheren Zhu, Yi Chai, Zhimin Yang, Chenghong Huang
, Available online  , doi: 10.1109/JAS.2020.1003408
Abstract HTML PDF
Abstract:
A classic kind of researches about the operational safety criterion for dynamic systems with barrier function can be roughly summarized as functional relationship, denoted by \begin{document}$\oplus $\end{document}, between the barrier function and its first derivative for time \begin{document}$t$\end{document}, where \begin{document}$\oplus $\end{document} can be “=”, “\begin{document}$\langle $\end{document}”, or “\begin{document}$\rangle $\end{document}”, et al. This article draws on the form of the stable condition expression for finite time stability to formulate a novel kind of relaxed safety judgement criteria called exponential-alpha safety criteria. Moreover, we initially explore to use the control barrier function under exponential-alpha safety criteria to achieve the control for the dynamic system operational safety. In addition, derived from the actual process systems, we propose multi-hypersphere methods which are used to construct barrier functions and improved them for three types of special spatial relationships between the safe state set and the unsafe state set, where both of them can be spatially divide into multiple subsets. And the effectiveness of the proposed safety criteria are demonstrated by simulation examples.
Remaining Useful Life Prediction for a Roller in a Hot Strip Mill Based on Deep Recurrent Neural Networks
Ruihua Jiao, Kaixiang Peng, Jie Dong
, Available online  
Abstract HTML PDF
Abstract:
Accurate estimation of the remaining useful life (RUL) and health state for rollers is of great significance to hot rolling production. It can provide decision support for roller management so as to improve the productivity of the hot rolling process. In addition, the RUL prediction for rollers is helpful in transitioning from the current regular maintenance strategy to conditional-based maintenance. Therefore, a new method that can extract coarse-grained and fine-grained features from batch data to predict the RUL of the rollers is proposed in this paper. Firstly, a new deep learning network architecture based on recurrent neural networks that can make full use of the extracted coarsegrained fine-grained features to estimate the heath indicator (HI) is developed, where the HI is able to indicate the health state of the roller. Following that, a state-space model is constructed to describe the HI, and the probabilistic distribution of RUL can be estimated by extrapolating the HI degradation model to a predefined failure threshold. Finally, application to a hot strip mill is given to verify the effectiveness of the proposed methods using data collected from an industrial site, and the relatively low RMSE and MAE values demonstrate its advantages compared with some other popular deep learning methods.
Coherent H Control for Linear Quantum Systems with Uncertainties in the Interaction Hamiltonian
Chengdi Xiang, Shan Ma, Sen Kuang, Daoyi Dong
, Available online  
Abstract HTML PDF
Abstract:
This work conducts robust H analysis for a class of quantum systems subject to perturbations in the interaction Hamiltonian. A necessary and sufficient condition for the robustly strict bounded real property of this type of uncertain quantum system is proposed. This paper focuses on the study of coherent robust H controller design for quantum systems with uncertainties in the interaction Hamiltonian. The desired controller is connected with the uncertain quantum system through direct and indirect couplings. A necessary and sufficient condition is provided to build a connection between the robust H control problem and the scaled H control problem. A numerical procedure is provided to obtain coefficients of a coherent controller. An example is presented to illustrate the controller design method.
Distributed fault-tolerant containment control for nonlinear multi-agent systems under directed network topology via hierarchical approach
Shuyi Xiao, Jiuxiang Dong
, Available online  
Abstract HTML PDF
Abstract:
This paper investigates the distributed faulttolerant containment control (FTCC) problem of nonlinear multi-agent systems (MASs) under a directed network topology. The proposed control framework which is independent on the global information about the communication topology consists of two layers. Different from most existing distributed fault-tolerant control (FTC) protocols where the fault in one agent may propagate over network, the developed control method can eliminate the phenomenon of fault propagation. Based on the hierarchical control strategy, the FTCC problem with a directed graph can be simplified to the distributed containment control of the upper layer and the fault-tolerant tracking control of the lower layer. Finally, simulation results are given to demonstrate the effectiveness of the proposed control protocol.
Computation of an Emptiable Minimal Siphon in a Subclass of Petri Nets Using Mixed-integer Programming
Shouguang Wang, Wenli Duo, Xin Guo, Xiaoning Jiang, Dan You, Kamel Barkaoui, MengChu Zhou
, Available online  , doi: 10.1109/JAS.2020.1003210
Abstract HTML PDF
Abstract:
Deadlock resolution strategies based on siphon control are widely investigated. Their computational efficiency largely depends on siphon computation. Mixed-integer programming (MIP) can be utilized for the computation of an emptiable siphon in a Petri net (PN). Based on it, deadlock resolution strategies can be designed without requiring complete siphon enumeration that has exponential complexity. Due to this reason, various MIP methods are proposed for various subclasses of PNs. This work proposes an innovative MIP method to compute an emptiable minimal siphon (EMS) for a subclass of PNs named S4PR. In particular, many particular structural characteristics of EMS in S4PR are formalized as constraints, which greatly reduces the solution space. Experimental results show that the proposed MIP method has higher computational efficiency. Furthermore, the proposed method allows one to determine the liveness of an ordinary S4PR.
Finite-Time Convergence Disturbance Rejection Control for a Flexible Timoshenko Manipulator
Zhijia Zhao, Zhijie Liu
, Available online  , doi: 10.1109/JAS.2020.1003378
Abstract HTML PDF
Abstract:
This paper focuses on a new finite-time convergence disturbance rejection control scheme design for a flexible Timoshenko manipulator subject to extraneous disturbances. To suppress the shear deformation and elastic oscillation, position the manipulator in a desired angle, and ensure the finitetime convergence of disturbances, we develop three disturbance observers (DOs) and boundary controllers. Under the derived DOs-based control schemes, the controlled system is guaranteed to be uniformly bounded stable and disturbance estimation errors converge to zero in a finite time. In the end, numerical simulations are established by finite difference methods to demonstrate the effectiveness of the devised scheme by selecting appropriate parameters.
A Sensorless State Estimation for A Safety-Oriented Cyber-Physical System in Urban Driving: Deep Learning Approach
Mohammad Al-Sharman, David Murdoch, Dongpu Cao, Chen Lv, Yahya H. Zweiri, Derek Rayside, William Melek
, Available online  
Abstract HTML PDF
Abstract:
In today’s modern electric vehicles, enhancing the safety-critical cyber-physical system (CPS)’s performance is necessary for the safe maneuverability of the vehicle. As a typical CPS, the braking system is crucial for the vehicle design and safe control. However, precise state estimation of the brake pressure is desired to perform safe driving with a high degree of autonomy. In this paper, a sensorless state estimation technique of the vehicle’s brake pressure is developed using a deep-learning approach. A deep neural network (DNN) is structured and trained using special deep-learning training techniques, such as, dropout and rectified units. These techniques are utilized to obtain more accurate model for brake pressure state estimation applications. The proposed model is trained using real experimental training data which were collected via conducting real vehicle testing. The vehicle was attached to a chassis dynamometer while the brake pressure data were collected under random driving cycles. Based on these experimental data, the DNN is trained and the performance of the proposed state estimation approach is validated accordingly. The results demonstrate high-accuracy brake pressure state estimation with RMSE of 0.048 MPa.
An Eco-Route Planner for Heavy Duty Vehicles
Maria Pia Fanti, Agostino Marcello Mangini, Alfredo Favenza, Gianvito Difilippo
, Available online  
Abstract HTML PDF
Abstract:
Driving style, traffic and weather conditions have a significant impact on vehicle fuel consumption and in particular, the road freight traffic significantly contributes to the \begin{document}$ CO_2$\end{document} increase in atmosphere. This paper proposes an Eco-Route Planner devoted to determine and communicate to the drivers of Heavy-Duty Vehicles (HDVs) the eco-route that guarantees the minimum fuel consumption by respecting the travel time established by the freight companies. The proposed eco-route is the optimal route from origin to destination and includes the optimized speed and gear profiles. To this aim, the Cloud Computing System architecture is composed of two main components: the Data Management System that collects, fuses and integrates the raw external sources data and the Cloud Optimizer that builds the route network, selects the eco-route and determines the optimal speed and gear profiles. Finally, a real case study is discussed by showing the benefit of the proposed Eco-Route planner.
Parametric Transformation of Timed Weighted Marked Graphs: Applications in Optimal Resource Allocation
Zhou He, Ziyue Ma, Zhiwu Li, Alessandro Giua
, Available online  
Abstract HTML PDF
Abstract:
Timed weighted marked graphs are a subclass of timed Petri nets that have wide applications in the control and performance analysis of flexible manufacturing systems. Due to the existence of multiplicities (i.e., weights) on edges, the performance analysis and resource optimization of such graphs represent a challenging problem. In this paper, we develop an approach to transform a timed weighted marked graph whose initial marking is not given, into an equivalent parametric timed marked graph where the edges have unitary weights. In order to explore an optimal resource allocation policy for a system, an analytical method is developed for the resource optimization of timed weighted marked graphs by studying an equivalent net. Finally, we apply the proposed method to a flexible manufacturing system and compare the results with a previous heuristic approach. Simulation analysis shows that the developed approach is superior to the heuristic approach.
Adaptive Backstepping Control Design for Semi-Active Suspension of Half-Vehicle With Magnetorheological Damper
Khalid El Majdoub, Fouad Giri, Fatima-Zahra Chaoui
, Available online  
Abstract HTML PDF
Abstract:
This paper investigates the problem of controlling half-vehicle semi-active suspension system involving a magnetorheological (MR) damper. This features a hysteretic behavior that is presently captured through the nonlinear Bouc-Wen model. The control objective is to regulate well the heave and the pitch motions of the chassis despite the road irregularities. The difficulty of the control problem lies in the nonlinearity of the system model, the uncertainty of some of its parameters, and the inaccessibility to measurements of the hysteresis internal state variables. Using Lyapunov control design tools, we design two observers to get online estimates of the hysteresis internal states and a stabilizing adaptive state-feedback regulator. The whole adaptive controller is formally shown to meet the desired control objectives. This theoretical result is confirmed by several simulations demonstrating the supremacy of the latter compared to the skyhook control and passive suspension.
Performance Evaluation of Public Bus Transportation by Using DEA Models and Shannon’s Entropy: An Example From a Company in a Large City of China
Zicheng Liu, Naiqi Wu, Yan Qiao, Zhiwu Li
, Available online  , doi: 10.1109/JAS.2020.1003405
Abstract HTML PDF
Abstract:
The purpose of this paper is to assess the operational efficiency of a public bus transportation via a case study from a company in a large city of China by using data envelopment analysis (DEA) model and Shannon’s entropy. This company operates 37 main routes on the backbone roads. Thus, it plays a significant role in public transportation in the city. According to bus industry norms, an efficiency evaluation index system is constructed from the perspective of both company operation and passenger demands. For passenger satisfaction, passenger waiting time and passenger-crowding degree are considered, and they are undesirable indicators. To describe such indicators, a super-efficient DEA model is constructed. With this model, by using actual data, efficiency is evaluated for each bus route. Results show that the DEA model with Shannon’s entropy being combined achieves more reasonable results. Also, sensitivity analysis is presented. Therefore, the results are meaningful for the company to improve its operations and management.
Limited-Budget Consensus Design and Analysis for Multiagent Systems with Switching Topologies and Intermittent Communications
Le Wang, Jianxiang Xi, Bo Hou, Guangbin Liu
, Available online  
Abstract HTML PDF
Abstract:
This paper investigates limited-budget consensus design and analysis problems of general high-order multiagent systems with intermittent communications and switching topologies. The main contribution of this paper is that the trade-off design between the energy consumption and the consensus performance can be realized while achieving leaderless or leader-following consensus, under constraints of limited budgets and intermittent communications. Firstly, a new intermittent limited-budget consensus control protocol with a practical trade-off design index is proposed, where the total budget of the whole multiagent system is limited. Then, leaderless limited-budget consensus design and analysis criteria are derived, in which the matrix variables of linear matrix inequalities are determined according to the total budget and the practical trade-off design parameters. Meanwhile, an explicit formulation of the consensus function is derived to describe the consensus state trajectory of the whole system. Moreover, a new two-stage transformation strategy is utilized for leader-following cases, by which the dynamics decomposition of leaderless and leader-following cases can be converted into a unified framework, and sufficient conditions of the leader-following limited-budget consensus design and analysis are determined via those of the leaderless cases. Finally, numerical simulations are given to illustrate theoretical results.
Dust Distribution Study at the Blast Furnace Top Based on \begin{document}$k - S\varepsilon - {u_{p}}$\end{document} Model
Zhipeng Chen, Zhaohui Jiang, Chunjie Yang, Weihua Gui, Youxian Sun
, Available online  
Abstract HTML PDF
Abstract:
The dust distribution law acting at the top of a blast furnace (BF) is of great significance for understanding gas flow distribution and mitigating the negative influence of dust particles on the accuracy and service life of detection equipment. The harsh environment inside a BF makes it difficult to describe the dust distribution. This paper addresses this problem by proposing a dust distribution \begin{document}$k - S\varepsilon - {u_{p}}$\end{document} model based on interphase (gas-powder) coupling. The proposed model is coupled with a \begin{document}$k - S\varepsilon $\end{document} model (which describes gas flow movement) and a \begin{document}${u_{p}}$\end{document} model (which depicts dust movement). First, the kinetic energy equation and turbulent dissipation rate equation in the \begin{document}$k - S{\varepsilon}$\end{document} model are established based on the modeling theory and Single-Green-Function two-scale direct interaction approximation (SGF-TSDIA) theory. Second, a dust particle movement \begin{document}${u_{p}}$\end{document} model is built based on a force analysis of the dust and Newton's laws of motion. Finally, a coupling factor that describes the interphase interaction is proposed, and the \begin{document}$k - S\varepsilon - {u_{p}}$\end{document} model, with clear physical meaning, rigorous mathematical logic, and adequate generality, is developed. Simulation results and on-site verification show that the \begin{document}$k - S{\varepsilon} - {u_{p}}$\end{document} model not only has high precision, but also reveals the aggregate distribution features of the dust, which are helpful in optimizing the installation position of the detection equipment and improving its accuracy and service life.
A Survey and Tutorial of EEG-Based Brain Monitoring for Driver State Analysis
Ce Zhang, Azim Eskandarian
, Available online  
Abstract HTML PDF
Abstract:
The driver’s cognitive and physiological states affect his/her ability to control the vehicle. Thus, these driver states are essential to the safety of automobiles. The design of advanced driver assistance systems (ADAS) or autonomous vehicles will depend on their ability to interact effectively with the driver. A deeper understanding of the driver state is, therefore, paramount. EEG is proven to be one of the most effective methods for driver state monitoring and human error detection. This paper discusses EEG-based driver state detection systems and their corresponding analysis algorithms over the last three decades. First, the commonly used EEG system setup for driver state studies is introduced. Then, the EEG signal preprocessing, feature extraction, and classification algorithms for driver state detection are reviewed. Finally, EEG-based driver state monitoring research is reviewed in-depth, and its future development is discussed. It is concluded that the current EEG-based driver state monitoring algorithms are promising for safety applications. However, many improvements are still required in EEG artifact reduction, real-time processing, and between-subject classification accuracy.
Automatic Detection of COVID-19 Infection Using Chest X-Ray Images Through Transfer Learning
Elene F. Ohata, Gabriel M. Bezerra, João Victor S. das Chagas, Aloísio V. Lira Neto, Adriano B. Albuquerque, Victor Hugso C. de Albuquerque, Pedro P. Rebouças Filho
, Available online  
Abstract HTML PDF
Abstract:
The new coronavirus (COVID-19), declared by the World Health Organization as a pandemic, has infected more than 1 million people and killed more than 50 thousand. An infection caused by COVID-19 can develop into pneumonia, which can be detected by a chest x-ray exam and should be treated appropriately. In this work, we propose an automatic detection method for COVID-19 infection based on chest x-ray images. The datasets constructed for this study are composed of 194 x-ray images of patients diagnosed with coronavirus and 194 x-ray images of healthy patients. Since few images of patients with COVID-19 are publicly available, we apply the concept of transfer learning for this task. We use different architectures of Convolutional Neural Networks (CNNs) trained on ImageNet, and adapt them to behave as feature extractors for the x-ray images. Then, the CNNs are combined with consolidated machine learning methods, such as k-Nearest Neighbor, Bayes, Random Forest, Multilayer Perceptron (MLP), and Support Vector Machine (SVM). The results show that, for one of the datasets, the extractor-classifier pair with the best performance is the MobileNet architecture with the SVM classifier using a linear kernel, which achieves an accuracy and an F1-Score of 98.5%. For the other dataset, the best pair is DenseNet201 with MLP, achieving an accuracy and an F1-Score of 95.6%. Thus, the proposed approach demonstrates efficiency in detecting COVID-19 in x-ray images.
Adaptive Control of a Two-Link Robot Using Batch Least-Square Identifier
Mostafa Bagheri, Iasson Karafyllis, Peiman Naseradinmousavi, Miroslav Krstić
, Available online  
Abstract HTML PDF
Abstract:
We design a regulation-triggered adaptive controller for robot manipulators to efficiently estimate unknown parameters and to achieve asymptotic stability in the presence of coupled uncertainties. Robot manipulators are widely used in telemanipulation systems where they are subject to model and environmental uncertainties. Using conventional control algorithms on such systems can cause not only poor control performance, but also expensive computational costs and catastrophic instabilities. Therefore, system uncertainties need to be estimated through designing a computationally efficient adaptive control law. We focus on robot manipulators as an example of a highly nonlinear system. As a case study, a 2-DOF manipulator subject to four parametric uncertainties is investigated. First, the dynamic equations of the manipulator are derived, and the corresponding regressor matrix is constructed for the unknown parameters. For a general nonlinear system, a theorem is presented to guarantee the asymptotic stability of the system and the convergence of parameters' estimations. Finally, simulation results are discussed for a two-link manipulator, and the performance of the proposed scheme is thoroughly evaluated.
Energy-Efficient Optimal Guaranteed Cost Intermittent-Switch Control of a Direct Expansion Air Conditioning System
Jun Mei, Zhenyu Lu, Junhao Hu, Yuling Fan
, Available online  
Abstract HTML PDF
Abstract:
To improve the energy efficiency of a direct expansion air conditioning (DX A/C) system while guaranteeing occupancy comfort, a hierarchical controller for a DX A/C system with uncertain parameters is proposed. The control strategy consists of an open loop optimization controller and a closed-loop guaranteed cost periodically intermittent-switch controller (GCPISC). The error dynamics system of the closed-loop control is modelled based on the GCPISC principle. The difference, compared to the previous DX A/C system control methods, is that the controller designed in this paper performs control at discrete times. For the ease of designing the controller, a series of matrix inequalities are derived to be the sufficient conditions of the lower-layer closed-loop GCPISC controller. In this way, the DX A/C system output is derived to follow the optimal references obtained through the upper-layer open loop controller in exponential time, and the energy efficiency of the system is improved. Moreover, a static optimization problem is addressed for obtaining an optimal GCPISC law to ensure a minimum upper bound on the DX A/C system performance considering energy efficiency and output tracking error. The advantages of the designed hierarchical controller for a DX A/C system with uncertain parameters are demonstrated through some simulation results.
Data-Based Optimal Tracking of Autonomous Nonlinear Switching Systems
Xiaofeng Li, Lu Dong, Changyin Sun
, Available online  
Abstract HTML PDF
Abstract:
In this paper, a data-based scheme is proposed to solve the optimal tracking problem of autonomous nonlinear switching systems. The system state is forced to track the reference signal by minimizing the performance function. First, the problem is transformed to solve the corresponding Bellman optimality equation in terms of the Q-function (also named as action value function). Then, an iterative algorithm based on adaptive dynamic programming (ADP) is developed to find the optimal solution which is totally based on sampled data. The linear-in-parameter (LIP) neural network is taken as the value function approximator. Considering the presence of approximation error at each iteration step, the generated approximated value function sequence is proved to be boundedness around the exact optimal solution under some verifiable assumptions. Moreover, the effect that the learning process will be terminated after a finite number of iterations is investigated in this paper. A sufficient condition for asymptotically stability of the tracking error is derived. Finally, the effectiveness of the algorithm is demonstrated with three simulation examples.
Reduced-order Observer-based Leader-following Formation Control for Discrete-time Linear Multi-agent Systems
Zhongxin Liu, Yangbo Li, Fuyong Wang, Zengqiang Chen
, Available online  
Abstract HTML PDF
Abstract:
Formation control of discrete-time linear multi-agent systems using directed switching topology is considered in this work via a reduced-order observer, in which a formation control protocol is proposed under the assumption that each directed communication topology has a directed spanning tree. By utilizing the relative outputs of neighboring agents, a reduced-order observer is designed for each following agent. A multi-step control algorithm is established based on the Lyapunov method and the modified discrete-time algebraic Riccati equation. A sufficient condition is given to ensure that the discrete-time linear multi-agent system can achieve the expected leader-following formation. Finally, numerical examples are provided so as to demonstrate the effectiveness of the obtained results.
CurveNet: Curvature-Based Multitask Learning Deep Networks for 3D Object Recognition
A. A. M. Muzahid, Wanggen Wan, Ferdous Sohel, Lianyao Wu, Li Hou
, Available online  , doi: 10.1109/JAS.2020.1003324
Abstract HTML PDF
Abstract:
In computer vision fields, 3D object recognition is one of the most important tasks for many real-world applications. Three-dimensional convolutional neural networks (CNNs) have demonstrated their advantages in 3D object recognition. In this paper, we propose to use the principal curvature directions of 3D objects (using a CAD model) to represent the geometric features as inputs for the 3D CNN. Our framework, namely CurveNet, learns perceptually relevant salient features and predicts object class labels. Curvature directions incorporate complex surface information of a 3D object, which helps our framework to produce more precise and discriminative features for object recognition. Multitask learning is inspired by sharing features between two related tasks, where we consider pose classification as an auxiliary task to enable our CurveNet to better generalize object label classification. Experimental results show that our proposed framework using curvature vectors performs better than voxels as an input for 3D object classification. We further improved the performance of CurveNet by combining two networks with both curvature direction and voxels of a 3D object as the inputs. A Cross-Stitch module was adopted to learn effective shared features across multiple representations. We evaluated our methods using three publicly available datasets and achieved competitive performance in the 3D object recognition task.
Understanding Nonverbal Communication Cues of Human Personality Traits in Human-Robot Interaction
Zhihao Shen, Armagan Elibol, Nak Young Chong
, Available online  , doi: 10.1109/JAS.2020.1003201
Abstract HTML PDF
Abstract:
With the increasing presence of robots in our daily life, there is a strong need and demand for the strategies to acquire a high quality interaction between robots and users by enabling robots to understand users’ mood, intention, and other aspects. During human-human interaction, personality traits have an important influence on human behavior, decision, mood, and many others. Therefore, we propose an efficient computational framework to endow the robot with the capability of understanding the user’s personality traits based on the user’s nonverbal communication cues represented by three visual features including the head motion, gaze, and body motion energy, and three vocal features including voice pitch, voice energy, and mel-frequency cepstral coefficient (MFCC). We used the Pepper robot in this study as a communication robot to interact with each participant by asking questions, and meanwhile, the robot extracts the nonverbal features from each participant’s habitual behavior using its on-board sensors. On the other hand, each participant’s personality traits are evaluated with a questionnaire. We then train the ridge regression and linear support vector machine (SVM) classifiers using the nonverbal features and personality trait labels from a questionnaire and evaluate the performance of the classifiers. We have verified the validity of the proposed models that showed promising binary classification performance on recognizing each of the Big Five personality traits of the participants based on individual differences in nonverbal communication cues.
Stabilization Parametric Region of Distributed PID Controllers for General First-Order Multi-Agent Systems With Time Delay
Xinyi Yu, Peixuan Ding, Fan Yang, Chao Zou, Linlin Ou
, Available online  , doi: 10.1109/JAS.2019.1911627
Abstract HTML PDF
Abstract:
The stabilization problem of distributed proportional-integral-derivative (PID) controllers for general first-order multi-agent systems with time delay is investigated in the paper. The closed-loop multi-input multi-output (MIMO) framework in frequency domain is firstly introduced for the multi-agent system. Based on the matrix theory, the whole system is decoupled into several subsystems with respect to the eigenvalues of the Laplacian matrix. Considering that the eigenvalues may be complex numbers, the consensus problem of the multi-agent system is transformed into the stabilizing problem of all the subsystems with complex coefficients. For each subsystem with complex coefficients, the range of admissible proportional gains \begin{document}$ {k_{\rm{P}}} $\end{document} is analytically determined. Then, the stabilizing region in the space of integral gain (\begin{document}$ {k_{\rm{I}}} $\end{document}) and derivative gain (\begin{document}$ {k_{\rm{D}}} $\end{document}) for a given \begin{document}$ {k_{\rm{P}}} $\end{document} value is also obtained in an analytical form. The entire stabilizing set can be determined by sweeping \begin{document}$ {k_{\rm{P}}} $\end{document} in the allowable range. The proposed method is conducted for general first-order multi-agent systems under arbitrary topology including undirected and directed graph topology. Besides, the results in the paper provide the basis for the design of distributed PID controllers satisfying different performance criteria. The simulation examples are presented to check the validity of the proposed control strategy.
Sampled-Data Asynchronous Fuzzy Output Feedback Control for Active Suspension Systems in Restricted Frequency Domain
Wenfeng Li, Zhengchao Xie, Yucong Cao, Pak Kin Wong, Jing Zhao
, Available online  
Abstract HTML PDF
Abstract:
This paper proposes a novel sampled-data asynchronous fuzzy output feedback control approach for active suspension systems in restricted frequency domain. In order to better investigate uncertain suspension dynamics, the sampled-data Takagi-Sugeno (T-S) fuzzy half-car active suspension (HCAS) system is considered, which is further modelled as a continuous system with an input delay. Firstly, considering that the fuzzy system and the fuzzy controller cannot share the identical premises due to the existence of input delay, a reconstructed method is employed to synchronize the time scales of membership functions between the fuzzy controller and the fuzzy system. Secondly, since external disturbances often belong to a restricted frequency range, a finite frequency control criterion is presented for control synthesis to reduce conservatism. Thirdly, given a full information of state variables is hardly available in practical suspension systems, a two-stage method is proposed to calculate the static output feedback control gains. Moreover, an iterative algorithm is proposed to compute the optimum solution. Finally, numerical simulations verify the effectiveness of the proposed controllers.
A Novel green supplier selection method based on the interval type-2 fuzzy prioritized Choquet Bonferroni means
Peide Liu, Hui Gao
, Available online  
Abstract HTML PDF
Abstract:
In view of the environment competencies, selecting the optimal green supplier is one of the crucial issues for enterprises, and multi-criteria decision-making (MCDM) methodologies can more easily solve this green supplier selection (GSS) problem. In addition, prioritized aggregation (PA) operator can focus on the prioritization relationship over the criteria, Choquet integral (CI) operator can fully take account of the importance of criteria and the interactions among them, and Bonferroni mean (BM) operator can capture the interrelationships of criteria. However, most existing researches cannot simultaneously consider the interactions, interrelationships and prioritizations over the criteria, which are involved in the GSS process. Moreover, the interval type-2 fuzzy set (IT2FS) is a more effective tool to represent the fuzziness. Therefore, based on the advantages of PA, CI, BM and IT2FS, in this paper, the interval type-2 fuzzy prioritized Choquet normalized weighted BM operators with λ fuzzy measure and generalized prioritized measure are proposed, and some properties are discussed. Then, a novel MCDM approach for GSS based upon the presented operators is developed, and detailed decision steps are given. Finally, the applicability and practicability of the proposed methodology are demonstrated by its application in the shared-bike GSS and by comparisons with other methods. The advantages of the proposed method are that it can consider interactions, interrelationships and prioritizations over the criteria simultaneously.
Empirical Research on the Application of a Structure-Based Software Reliability Model
Jie Zhang, Yang Lu, Ke Shi, Chong Xu
, Available online  
Abstract HTML PDF
Abstract:
Reliability engineering implemented early in the development process has a significant impact on improving software quality. It can assist in the design of architecture and guide later testing, which is beyond the scope of traditional reliability analysis methods. Structural reliability models work for this, but most of them remain tested in only simulation case studies due to lack of actual data. Here we use software metrics for reliability modeling which are collected from source codes of post versions. Through the proposed strategy, redundant metric elements are filtered out and the rest are aggregated to represent the module reliability. We further propose a framework to automatically apply the module value and calculate overall reliability by introducing formal methods. The experimental results from an actual project show that reliability analysis at the design and development stage can be close to the validity of analysis at the test stage through reasonable application of metric data. The study also demonstrates that the proposed methods have good applicability.
Theoretical and Experimental Investigation of Driver Noncooperative-Game Steering Control Behavior
Xiaoxiang Na, David Cole
, Available online  
Abstract HTML PDF
Abstract:
This paper investigates two noncooperative-game strategies which may be used to represent a human driver’s steering control behavior in response to vehicle automated steering intervention. The first strategy, namely the Nash strategy is derived based on the assumption that a Nash equilibrium is reached in a noncooperative game of vehicle path-following control involving a driver and a vehicle automated steering controller. The second one, namely the Stackelberg strategy is derived based on the assumption that a Stackelberg equilibrium is reached in a similar context. A simulation study is performed to study the differences between the two proposed noncooperative- game strategies. An experiment using a fixed-base driving simulator is carried out to measure six test drivers’ steering behavior in response to vehicle automated steering intervention. The Nash strategy is then fitted to measured driver steering wheel angles following a model identification procedure. Control weight parameters involved in the Nash strategy are identified. It is found that the proposed Nash strategy with the identified control weights is capable of representing the trend of measured driver steering behavior and vehicle lateral responses. It is also found that the proposed Nash strategy is superior to the classic driver steering control strategy which has widely been used for modeling driver steering control over the past. A discussion on improving automated steering control using the gained knowledge of driver noncooperative-game steering control behavior was made.
A Novel Rolling Bearing Vibration Impulsive Signals Detection Approach Based on Dictionary Learning
Chuan Sun, Hongpeng Yin, Yanxia Li, Yi Chai
, Available online  
Abstract HTML PDF
Abstract:
The localized faults of rolling bearings can be diagnosed by its vibration impulsive signals. However, it is always a challenge to extract the impulsive feature under background noise and nonstationary conditions. This paper investigates impulsive signals detection of a single-point defect rolling bearing and presents a novel data-driven detection approach based on dictionary learning. To overcome the effects harmonic and noise components, we propose an autoregressive-minimum entropy deconvolution model to separate harmonic and deconvolve the effect of the transmission path. To address the shortcomings of conventional sparse representation under the changeable operation environment, we propose an approach that combines K-clustering with singular value decomposition (K-SVD) and Split-Bregman to extract impulsive components precisely. Via experiments on synthetic signals and real run-to-failure signals, the excellent performance for different impulsive signals detection verifies the effectiveness and robustness of the proposed approach. Meanwhile, a comparison with the state-of-the-art methods is illustrated, which shows that the proposed approach can provide more accurate detected impulsive signals.
Static-Output-Feedback Based Robust Fuzzy Wheelbase Preview Control for Uncertain Active Suspensions With Time Delay and Finite Frequency Constraint
Wenfeng Li, Zhengchao Xie, Jing Zhao, Pak Kin Wong, Hui Wang, Xiaowei Wang
, Available online  
Abstract HTML PDF
Abstract:
This paper proposes a static-output-feedback based robust fuzzy wheelbase preview control algorithm for uncertain active suspensions with time delay and finite frequency constraint. Firstly, a Takagi-Sugeno (T-S) fuzzy augmented model is established to formulate the half-car active suspension system with consideration of time delay, sprung mass variation and wheelbase preview information. Secondly, in view of the resonation between human’s organs and vertical vibrations in the frequency range of 4-8 Hz, a finite frequency control criterion in terms of H norm is developed to improve ride comfort. Meanwhile, other mechanical constraints are also considered and satisfied via generalized H2 norm. Thirdly, in order to maintain the feasibility of the controller despite of some state variables are not online-measured, a two stage approach is adopted to derive a static output feedback controller. Finally, numerical simulation results illustrate the excellent performance of the proposed controller.
Orientation Field Code Hashing: a Novel Method for Fast Palmprint Identification
Xi Chen, Ming Yu, Feng Yue, Bin Li
, Available online  
Abstract HTML PDF
Abstract:
For a large-scale palmprint identification system, it is necessary to speed up the identification process to reduce the response time and also to have a high rate of identification accuracy. In this paper, we propose a novel hashing-based technique called orientation field code hashing for fast palmprint identification. By investigating hashing-based algorithms, we first propose a double-orientation encoding method to eliminate the instability of orientation codes and make the orientation codes more reasonable. Secondly, we propose a window-based feature measurement for rapid searching of the target. We explore the influence of parameters related to hashing-based palmprint identification. We have carried out a number of experiments on the Hong Kong PolyU large-scale database and the CASIA palmprint database plus a synthetic database. The results show that on the Hong Kong PolyU large-scale database, the proposed method is about 1.5 times faster than the state-of-the-art ones, while achieves the comparable identification accuracy. On the CASIA database plus the synthetic database, the proposed method also achieves a better performance on identification speed.
Deadlock-Free Supervisor Design for Robotic Manufacturing Cells With Uncontrollable and Unobservable Events
Bo Huang, MengChu Zhou, Cong Wang, Abdullah Abusorrah, Yusuf Al-Turki
, Available online  , doi: 10.1109/JAS.2020.1003207
Abstract HTML PDF
Abstract:
In this paper, a deadlock prevention policy for robotic manufacturing cells with uncontrollable and unobservable events is proposed based on a Petri net formalism. First, a Petri net for the deadlock control of such systems is defined. Its admissible markings and first-met inadmissible markings (FIMs) are introduced. Next, place invariants are designed in an integer linear program (ILP) to survive all admissible markings and prohibit all FIMs, keeping the underlying system from reaching deadlocks, livelocks, bad markings, and the markings that may evolve into them via firings of uncontrollable transitions. The ILP also ensures that the obtained deadlock-free supervisor does not observe any unobservable transition. In addition, the supervisor is guaranteed to be admissible and structurally minimal in terms of both control places and added arcs. The condition under which the supervisor is maximally permissive in behavior is also given. Finally, experimental results and comparisons are given to demonstrate the effectiveness of the proposed method.
Dynamic Evaluation Strategies for Multiple Aircrafts Formation Using Collision and Matching Probabilities
Hongbo Zhao, Sentang Wu, Yongming Wen, Jia Deng
, Available online  , doi: 10.1109/JAS.2020.1003198
Abstract HTML PDF
Abstract:
Configuration evaluation is a key technology to be considered in the design of multiple aircrafts formation (MAF) configurations with high dynamic properties in engineering applications. This paper deduces the relationship between relative velocity, dynamic safety distance and dynamic adjacent distance of formation members, then divides the formation states into collision-state and matching-state. Meanwhile, probability models are constructed based on the binary normal distribution of relative distance and relative velocity. Moreover, configuration evaluation strategies are studied by quantitatively analyzing the denseness and the basic capabilities according to the MAF collision-state probability and the MAF matching-state probability, respectively. The scale of MAF is grouped into 5 levels, and previous lattice-type structures are extended into four degrees by taking the relative velocities into account to instruct the configuration design under complex task conditions. Finally, hardware-in-loop (HIL) simulation and outfield flight test results are presented to verify the feasibility of these evaluation strategies.
A Fully Distributed Approach to Optimal Energy Scheduling of Users and Generators Considering a Novel Combined Neurodynamic Algorithm in Smart Grid
Chentao Xu, Xing He
, Available online  
Abstract HTML PDF
Abstract:
A fully distributed microgrid system model is presented in this paper. In the user side, two types of load and plug-in electric vehicles are considered to schedule energy for more benefits. The charging and discharging states of the electric vehicles are represented by the zero-one variables with more flexibility. To solve the nonconvex optimization problem of the users, a novel neurodynamic algorithm which combines the neural network algorithm with the differential evolution algorithm is designed and its convergence speed is faster. A distributed algorithm with a new approach to deal with the equality constraints is used to solve the convex optimization problem of the generators which can protect their privacy. Simulation results and comparative experiments show that the model and algorithms are effective.
Novel Stability Criteria for Linear Time-Delay Systems Using Lyapunov-Krasovskii Functionals With A Cubic Polynomial on Time-Varying Delay
Xian-Ming Zhang, Qing-Long Han, Xiaohua Ge
, Available online  , doi: 10.1109/JAS.2020.1003111
Abstract HTML PDF
Abstract:
One of challenging issues on stability analysis of time-delay systems is how to obtain a stability criterion from a matrix-valued polynomial on a time-varying delay. The first contribution of this paper is to establish a necessary and sufficient condition on a matrix-valued polynomial inequality over a certain closed interval. The degree of such a matrix-valued polynomial can be an arbitrary finite positive integer. The second contribution of this paper is to introduce a novel Lyapunov-Krasovskii functional, which includes a cubic polynomial on a time-varying delay, in stability analysis of time-delay systems. Based on the novel Lyapunov-Krasovskii functional and the necessary and sufficient condition on matrix-valued polynomial inequalities, two stability criteria are derived for two cases of the time-varying delay. A well-studied numerical example is given to show that the proposed stability criteria are of less conservativeness than some existing ones.
An Optimal Control Strategy for Multi-UAVs Target Tracking and Cooperative Competition
Yiguo Yang, Liefa Liao, Hong Yang, Shuai Li
, Available online  
Abstract HTML PDF
Abstract:
An optimal control strategy of winner-take-all (WTA) model is proposed for target tracking and cooperative competition of multi-UAVs. In this model, firstly, based on the artificial potential field method, the artificial potential field function is improved and the fuzzy control decision is designed to realize the trajectory tracking of dynamic targets. Secondly, according to the finite-time convergence high-order differentiator, a double closed-loop UAV speed tracking controller is designed to realize the speed control and tracking of the target tracking trajectory. Numerical simulation results show that the designed speed tracking controller has the advantages of fast tracking, high precision, strong stability and avoiding chattering. Finally, a cooperative competition scheme of multiple UAVs based on WTA is designed to find the minimum control energy from multiple UAVs and realize the optimal control strategy. Theoretical analysis and numerical simulation results show that the model has the fast convergence, high control accuracy, strong stability and good robustness.
Distributed MPC for Reconfigurable Architecture Systems via Alternating Direction Method of Multipliers
Ting Bai, Shaoyuan Li, Yuanyuan Zou
, Available online  
Abstract HTML PDF
Abstract:
This paper investigates the distributed model predictive control (MPC) problem of linear systems whose network topologies are changeable by the way of inserting new subsystems, disconnecting existing subsystems, or merely modifying the couplings between different subsystems. To equip live systems with the quick response ability when modifying network topology, while keeping a satisfactory dynamic performance, a novel reconfiguration control scheme based on the alternating direction method of multipliers (ADMM) is presented. In this scheme, the local controllers directly influenced by the structure realignment are redesigned in the reconfiguration control. Meanwhile, by employing the powerful ADMM algorithm, the iterative formulas for solving the reconfigured optimization problem are obtained, which significantly accelerate the computation speed and ensure a timely output of the reconfigured optimal control response. Ultimately, the presented reconfiguration scheme is applied to the level control of a benchmark four-tank plant to illustrate its effectiveness and main characteristics.
Adaptive Control of Discrete-time Nonlinear Systems Using ITF-ORVFL
Xiaofei Zhang, Hongbin Ma, Wenchao Zuo, Man Luo
, Available online  , doi: 10.1109/JAS.2019.1911801
Abstract HTML PDF
Abstract:
Random vector functional link networks (RVFL) is a class of single hidden layer neural networks based on a learner paradigm by which some parameters are randomly selected and contains more information due to the direct links between inputs and outputs. In this paper, combining the advantages of RVFL and the ideas of online sequential extreme learning machine (OS-ELM) and initial-training-free online extreme learning machine (ITF-OELM), a novel online learning algorithm which is named as initial-training-free online random vector functional link (ITF-ORVFL) is investigated for training RVFL. Because the idea of ITF-ORVFL comes from OS-ELM and ITF-OELM, the link vector of RVFL can be analytically determined based on sequentially arriving data by ITF-ORVFL with a high learning speed. Besides a novel variable is added to the update formulae of ITF-ORVFL, and the stability for nonlinear systems based on this learning algorithm is guaranteed. The experiment results indicate that the proposed ITF-ORVFL is effective in estimating nonparametric uncertainty.
Static Force-Based Modeling and Parameter Estimation for a Deformable Link Composed of Passive Spherical Joints with Preload Forces
Gaofeng Li, Dezhen Song, Lei Sun, Shan Xu, Hongpeng Wang, Jingtai Liu
, Available online  , doi: 10.1109/JAS.2019.1911549
Abstract HTML PDF
Abstract:
To balance the contradiction between higher flexibility and heavier load bearing capacity, we present a novel deformable manipulator which is composed of active rigid joints and deformable links. The deformable link is composed of passive spherical joints with preload forces between socket-ball surfaces. To estimate the load bearing capacity of a deformable link, we present a static force-based model of spherical joint with preload force and analyze the static force propagation in the deformable link. This yields an important result that the load bearing capacity of a spherical joint only depends on its radius, preload force, and static friction coefficient. We further develop a parameter estimation method to estimate the product of preload force and static friction coefficient. The experimental results validate our model. 80.4% of percentage errors on the maximum payload mass prediction are below 15%.
Vision Based Hand Gesture Recognition Using 3D Shape Context
Chen Zhu, Jianyu Yang, Zhanpeng Shao, Chunping Liu
, Available online  , doi: 10.1109/JAS.2019.1911534
Abstract HTML PDF
Abstract:
Hand gesture recognition is a popular topic in computer vision and makes human-computer interaction more flexible and convenient. The representation of hand gestures is critical for recognition. In this paper, we propose a new method to measure the similarity between hand gestures and exploit it for hand gesture recognition. The depth maps of hand gestures captured via the Kinect sensors are used in our method, where the 3D hand shapes can be segmented from the cluttered backgrounds. To extract the pattern of salient 3D shape features, we propose a new descriptor–3D Shape Context, for 3D hand gesture representation. The 3D Shape Context information of each 3D point is obtained in multiple scales because both local shape context and global shape distribution are necessary for recognition. The description of all the 3D points constructs the hand gesture representation, and hand gesture recognition is explored via dynamic time warping algorithm. Extensive experiments are conducted on multiple benchmark datasets. The experimental results verify that the proposed method is robust to noise, articulated variations, and rigid transformations. Our method outperforms state-of-the-art methods in the comparisons of accuracy and efficiency.

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor 2019: 5.129
    Rank:Top 17% (11/63), Category of Automation & Control Systems
    Quantile: The 1st (SCI Q1)
    CiteScore 2019 : 8.3
    Rank: Top 9% (Category of Computer Science: Information System) , Top 11% (Category of Control and Systems Engineering), Top 12% (Category of Artificial Intelligence)
    Quantile: The 1st (Q1)